UKBBLatent_Cardiac_20208_DiffAE3D_L128_S2023 / DiffAE_support_renderer.py
soumickmj's picture
Upload DiffAE
ad947b4 verified
from .DiffAE_support_config import *
from .DiffAE_diffusion_diffusion import SpacedDiffusionBeatGans as Sampler
from .DiffAE_model_unet_autoenc import BeatGANsAutoencModel
from torch.cuda import amp
def render_uncondition(conf: TrainConfig,
model: BeatGANsAutoencModel,
x_T,
sampler: Sampler,
latent_sampler: Sampler,
conds_mean=None,
conds_std=None,
clip_latent_noise: bool = False):
device = x_T.device
if conf.train_mode == TrainMode.diffusion:
assert conf.model_type.can_sample()
return sampler.sample(model=model, noise=x_T)
elif conf.train_mode.is_latent_diffusion():
model: BeatGANsAutoencModel
if conf.train_mode == TrainMode.latent_diffusion:
latent_noise = torch.randn(len(x_T), conf.style_ch, device=device)
else:
raise NotImplementedError()
if clip_latent_noise:
latent_noise = latent_noise.clip(-1, 1)
cond = latent_sampler.sample(
model=model.latent_net,
noise=latent_noise,
clip_denoised=conf.latent_clip_sample,
)
if conf.latent_znormalize:
cond = cond * conds_std.to(device) + conds_mean.to(device)
# the diffusion on the model
return sampler.sample(model=model, noise=x_T, cond=cond)
else:
raise NotImplementedError()
def render_condition(
conf: TrainConfig,
model: BeatGANsAutoencModel,
x_T,
sampler: Sampler,
x_start=None,
cond=None,
):
if conf.train_mode == TrainMode.diffusion:
assert conf.model_type.has_autoenc()
# returns {'cond', 'cond2'}
if cond is None:
cond = model.encode(x_start)
return sampler.sample(model=model,
noise=x_T,
model_kwargs={'cond': cond})
else:
raise NotImplementedError()