import math from dataclasses import dataclass from numbers import Number from typing import NamedTuple, Tuple, Union import numpy as np import torch as th from torch import nn import torch.nn.functional as F from .DiffAE_support_choices import * from .DiffAE_support_config_base import BaseConfig from .DiffAE_model_blocks import * from .DiffAE_model_nn import (conv_nd, linear, normalization, timestep_embedding, torch_checkpoint, zero_module) @dataclass class BeatGANsUNetConfig(BaseConfig): image_size: int = 64 in_channels: int = 3 # base channels, will be multiplied model_channels: int = 64 # output of the unet # suggest: 3 # you only need 6 if you also model the variance of the noise prediction (usually we use an analytical variance hence 3) out_channels: int = 3 # how many repeating resblocks per resolution # the decoding side would have "one more" resblock # default: 2 num_res_blocks: int = 2 # you can also set the number of resblocks specifically for the input blocks # default: None = above num_input_res_blocks: int = None # number of time embed channels and style channels embed_channels: int = 512 # at what resolutions you want to do self-attention of the feature maps # attentions generally improve performance # default: [16] # beatgans: [32, 16, 8] attention_resolutions: Tuple[int] = (16, ) # number of time embed channels time_embed_channels: int = None # dropout applies to the resblocks (on feature maps) dropout: float = 0.1 channel_mult: Tuple[int] = (1, 2, 4, 8) input_channel_mult: Tuple[int] = None conv_resample: bool = True group_norm_limit: int = 32 # always 2 = 2d conv dims: int = 2 # don't use this, legacy from BeatGANs num_classes: int = None use_checkpoint: bool = False # number of attention heads num_heads: int = 1 # or specify the number of channels per attention head num_head_channels: int = -1 # what's this? num_heads_upsample: int = -1 # use resblock for upscale/downscale blocks (expensive) # default: True (BeatGANs) resblock_updown: bool = True # never tried use_new_attention_order: bool = False resnet_two_cond: bool = False resnet_cond_channels: int = None # init the decoding conv layers with zero weights, this speeds up training # default: True (BeattGANs) resnet_use_zero_module: bool = True # gradient checkpoint the attention operation attn_checkpoint: bool = False def make_model(self): return BeatGANsUNetModel(self) class BeatGANsUNetModel(nn.Module): def __init__(self, conf: BeatGANsUNetConfig): super().__init__() self.conf = conf if conf.num_heads_upsample == -1: self.num_heads_upsample = conf.num_heads self.dtype = th.float32 self.time_emb_channels = conf.time_embed_channels or conf.model_channels self.time_embed = nn.Sequential( linear(self.time_emb_channels, conf.embed_channels), nn.SiLU(), linear(conf.embed_channels, conf.embed_channels), ) if conf.num_classes is not None: self.label_emb = nn.Embedding(conf.num_classes, conf.embed_channels) ch = input_ch = int(conf.channel_mult[0] * conf.model_channels) self.input_blocks = nn.ModuleList([ TimestepEmbedSequential( conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1)) ]) kwargs = dict( use_condition=True, two_cond=conf.resnet_two_cond, use_zero_module=conf.resnet_use_zero_module, # style channels for the resnet block cond_emb_channels=conf.resnet_cond_channels, ) self._feature_size = ch # input_block_chans = [ch] input_block_chans = [[] for _ in range(len(conf.channel_mult))] input_block_chans[0].append(ch) # number of blocks at each resolution self.input_num_blocks = [0 for _ in range(len(conf.channel_mult))] self.input_num_blocks[0] = 1 self.output_num_blocks = [0 for _ in range(len(conf.channel_mult))] ds = 1 resolution = conf.image_size for level, mult in enumerate(conf.input_channel_mult or conf.channel_mult): for _ in range(conf.num_input_res_blocks or conf.num_res_blocks): layers = [ ResBlockConfig( ch, conf.embed_channels, conf.dropout, out_channels=int(mult * conf.model_channels), group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_checkpoint=conf.use_checkpoint, **kwargs, ).make_model() ] ch = int(mult * conf.model_channels) if resolution in conf.attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint, num_heads=conf.num_heads, num_head_channels=conf.num_head_channels, group_norm_limit=conf.group_norm_limit, use_new_attention_order=conf. use_new_attention_order, )) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch # input_block_chans.append(ch) input_block_chans[level].append(ch) self.input_num_blocks[level] += 1 # print(input_block_chans) if level != len(conf.channel_mult) - 1: resolution //= 2 out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlockConfig( ch, conf.embed_channels, conf.dropout, out_channels=out_ch, group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_checkpoint=conf.use_checkpoint, down=True, **kwargs, ).make_model() if conf. resblock_updown else Downsample(ch, conf.conv_resample, dims=conf.dims, out_channels=out_ch))) ch = out_ch # input_block_chans.append(ch) input_block_chans[level + 1].append(ch) self.input_num_blocks[level + 1] += 1 ds *= 2 self._feature_size += ch self.middle_block = TimestepEmbedSequential( ResBlockConfig( ch, conf.embed_channels, conf.dropout, group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_checkpoint=conf.use_checkpoint, **kwargs, ).make_model(), AttentionBlock( ch, use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint, num_heads=conf.num_heads, num_head_channels=conf.num_head_channels, group_norm_limit=conf.group_norm_limit, use_new_attention_order=conf.use_new_attention_order, ), ResBlockConfig( ch, conf.embed_channels, conf.dropout, group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_checkpoint=conf.use_checkpoint, **kwargs, ).make_model(), ) self._feature_size += ch self.output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(conf.channel_mult))[::-1]: for i in range(conf.num_res_blocks + 1): # print(input_block_chans) # ich = input_block_chans.pop() try: ich = input_block_chans[level].pop() except IndexError: # this happens only when num_res_block > num_enc_res_block # we will not have enough lateral (skip) connecions for all decoder blocks ich = 0 # print('pop:', ich) layers = [ ResBlockConfig( # only direct channels when gated channels=ch + ich, emb_channels=conf.embed_channels, dropout=conf.dropout, out_channels=int(conf.model_channels * mult), group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_checkpoint=conf.use_checkpoint, # lateral channels are described here when gated has_lateral=True if ich > 0 else False, lateral_channels=None, **kwargs, ).make_model() ] ch = int(conf.model_channels * mult) if resolution in conf.attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=conf.use_checkpoint or conf.attn_checkpoint, num_heads=self.num_heads_upsample, num_head_channels=conf.num_head_channels, group_norm_limit=conf.group_norm_limit, use_new_attention_order=conf. use_new_attention_order, )) if level and i == conf.num_res_blocks: resolution *= 2 out_ch = ch layers.append( ResBlockConfig( ch, conf.embed_channels, conf.dropout, out_channels=out_ch, group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_checkpoint=conf.use_checkpoint, up=True, **kwargs, ).make_model() if ( conf.resblock_updown ) else Upsample(ch, conf.conv_resample, dims=conf.dims, out_channels=out_ch)) ds //= 2 self.output_blocks.append(TimestepEmbedSequential(*layers)) self.output_num_blocks[level] += 1 self._feature_size += ch # print(input_block_chans) # print('inputs:', self.input_num_blocks) # print('outputs:', self.output_num_blocks) if conf.resnet_use_zero_module: self.out = nn.Sequential( normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32), nn.SiLU(), zero_module( conv_nd(conf.dims, input_ch, conf.out_channels, 3, padding=1)), ) else: self.out = nn.Sequential( normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32), nn.SiLU(), conv_nd(conf.dims, input_ch, conf.out_channels, 3, padding=1), ) def forward(self, x, t, y=None, **kwargs): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param y: an [N] Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs. """ assert (y is not None) == ( self.conf.num_classes is not None ), "must specify y if and only if the model is class-conditional" # hs = [] hs = [[] for _ in range(len(self.conf.channel_mult))] emb = self.time_embed(timestep_embedding(t, self.time_emb_channels)) if self.conf.num_classes is not None: raise NotImplementedError() # assert y.shape == (x.shape[0], ) # emb = emb + self.label_emb(y) # new code supports input_num_blocks != output_num_blocks h = x.type(self.dtype) k = 0 for i in range(len(self.input_num_blocks)): for j in range(self.input_num_blocks[i]): h = self.input_blocks[k](h, emb=emb) # print(i, j, h.shape) hs[i].append(h) k += 1 assert k == len(self.input_blocks) h = self.middle_block(h, emb=emb) k = 0 for i in range(len(self.output_num_blocks)): for j in range(self.output_num_blocks[i]): # take the lateral connection from the same layer (in reserve) # until there is no more, use None try: lateral = hs[-i - 1].pop() # print(i, j, lateral.shape) except IndexError: lateral = None # print(i, j, lateral) h = self.output_blocks[k](h, emb=emb, lateral=lateral) k += 1 h = h.type(x.dtype) pred = self.out(h) return Return(pred=pred) class Return(NamedTuple): pred: th.Tensor @dataclass class BeatGANsEncoderConfig(BaseConfig): image_size: int in_channels: int model_channels: int out_hid_channels: int out_channels: int num_res_blocks: int attention_resolutions: Tuple[int] dropout: float = 0 channel_mult: Tuple[int] = (1, 2, 4, 8) use_time_condition: bool = True conv_resample: bool = True group_norm_limit: int = 32 dims: int = 2 use_checkpoint: bool = False num_heads: int = 1 num_head_channels: int = -1 resblock_updown: bool = False use_new_attention_order: bool = False pool: str = 'adaptivenonzero' def make_model(self): return BeatGANsEncoderModel(self) class BeatGANsEncoderModel(nn.Module): """ The half UNet model with attention and timestep embedding. For usage, see UNet. """ def __init__(self, conf: BeatGANsEncoderConfig): super().__init__() self.conf = conf self.dtype = th.float32 if conf.use_time_condition: time_embed_dim = conf.model_channels * 4 self.time_embed = nn.Sequential( linear(conf.model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) else: time_embed_dim = None ch = int(conf.channel_mult[0] * conf.model_channels) self.input_blocks = nn.ModuleList([ TimestepEmbedSequential( conv_nd(conf.dims, conf.in_channels, ch, 3, padding=1)) ]) self._feature_size = ch input_block_chans = [ch] ds = 1 resolution = conf.image_size for level, mult in enumerate(conf.channel_mult): for _ in range(conf.num_res_blocks): layers = [ ResBlockConfig( ch, time_embed_dim, conf.dropout, out_channels=int(mult * conf.model_channels), group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_condition=conf.use_time_condition, use_checkpoint=conf.use_checkpoint, ).make_model() ] ch = int(mult * conf.model_channels) if resolution in conf.attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=conf.use_checkpoint, num_heads=conf.num_heads, num_head_channels=conf.num_head_channels, group_norm_limit=conf.group_norm_limit, use_new_attention_order=conf. use_new_attention_order, )) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(conf.channel_mult) - 1: resolution //= 2 out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlockConfig( ch, time_embed_dim, conf.dropout, out_channels=out_ch, group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_condition=conf.use_time_condition, use_checkpoint=conf.use_checkpoint, down=True, ).make_model() if ( conf.resblock_updown ) else Downsample(ch, conf.conv_resample, dims=conf.dims, out_channels=out_ch))) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch self.middle_block = TimestepEmbedSequential( ResBlockConfig( ch, time_embed_dim, conf.dropout, group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_condition=conf.use_time_condition, use_checkpoint=conf.use_checkpoint, ).make_model(), AttentionBlock( ch, use_checkpoint=conf.use_checkpoint, num_heads=conf.num_heads, num_head_channels=conf.num_head_channels, group_norm_limit=conf.group_norm_limit, use_new_attention_order=conf.use_new_attention_order, ), ResBlockConfig( ch, time_embed_dim, conf.dropout, group_norm_limit=conf.group_norm_limit, dims=conf.dims, use_condition=conf.use_time_condition, use_checkpoint=conf.use_checkpoint, ).make_model(), ) self._feature_size += ch if conf.pool == "adaptivenonzero": self.out = nn.Sequential( normalization(ch, limit=conf.group_norm_limit if "group_norm_limit" in conf.__dict__ else 32), nn.SiLU(), nn.AdaptiveAvgPool2d((1, 1)) if conf.dims == 2 else nn.AdaptiveAvgPool3d((1, 1, 1)), conv_nd(conf.dims, ch, conf.out_channels, 1), nn.Flatten(), ) else: raise NotImplementedError(f"Unexpected {conf.pool} pooling") def forward(self, x, t=None, return_Nd_feature=False): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :return: an [N x K] Tensor of outputs. """ if self.conf.use_time_condition: emb = self.time_embed(timestep_embedding(t, self.model_channels)) else: emb = None results = [] h = x.type(self.dtype) for module in self.input_blocks: h = module(h, emb=emb) if self.conf.pool.startswith("spatial"): results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4))) h = self.middle_block(h, emb=emb) if self.conf.pool.startswith("spatial"): results.append(h.type(x.dtype).mean(dim=(2, 3) if self.conf.dims == 2 else (2, 3, 4))) h = th.cat(results, axis=-1) else: h = h.type(x.dtype) h_Nd = h h = self.out(h) if return_Nd_feature: return h, h_Nd else: return h def forward_flatten(self, x): """ transform the last Nd feature into a flatten vector """ h = self.out(x) return h class SuperResModel(BeatGANsUNetModel): """ A UNetModel that performs super-resolution. Expects an extra kwarg `low_res` to condition on a low-resolution image. """ def __init__(self, image_size, in_channels, *args, **kwargs): super().__init__(image_size, in_channels * 2, *args, **kwargs) def forward(self, x, timesteps, low_res=None, **kwargs): _, _, new_height, new_width = x.shape upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") x = th.cat([x, upsampled], dim=1) return super().forward(x, timesteps, **kwargs)