File size: 6,440 Bytes
c2ced9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
from .DiffAE_diffusion_base import *
from dataclasses import dataclass
def space_timesteps(num_timesteps, section_counts):
"""
Create a list of timesteps to use from an original diffusion process,
given the number of timesteps we want to take from equally-sized portions
of the original process.
For example, if there's 300 timesteps and the section counts are [10,15,20]
then the first 100 timesteps are strided to be 10 timesteps, the second 100
are strided to be 15 timesteps, and the final 100 are strided to be 20.
If the stride is a string starting with "ddim", then the fixed striding
from the DDIM paper is used, and only one section is allowed.
:param num_timesteps: the number of diffusion steps in the original
process to divide up.
:param section_counts: either a list of numbers, or a string containing
comma-separated numbers, indicating the step count
per section. As a special case, use "ddimN" where N
is a number of steps to use the striding from the
DDIM paper.
:return: a set of diffusion steps from the original process to use.
"""
if isinstance(section_counts, str):
if section_counts.startswith("ddim"):
desired_count = int(section_counts[len("ddim"):])
for i in range(1, num_timesteps):
if len(range(0, num_timesteps, i)) == desired_count:
return set(range(0, num_timesteps, i))
raise ValueError(
f"cannot create exactly {num_timesteps} steps with an integer stride"
)
section_counts = [int(x) for x in section_counts.split(",")]
size_per = num_timesteps // len(section_counts)
extra = num_timesteps % len(section_counts)
start_idx = 0
all_steps = []
for i, section_count in enumerate(section_counts):
size = size_per + (1 if i < extra else 0)
if size < section_count:
raise ValueError(
f"cannot divide section of {size} steps into {section_count}")
if section_count <= 1:
frac_stride = 1
else:
frac_stride = (size - 1) / (section_count - 1)
cur_idx = 0.0
taken_steps = []
for _ in range(section_count):
taken_steps.append(start_idx + round(cur_idx))
cur_idx += frac_stride
all_steps += taken_steps
start_idx += size
return set(all_steps)
@dataclass
class SpacedDiffusionBeatGansConfig(GaussianDiffusionBeatGansConfig):
use_timesteps: Tuple[int] = None
def make_sampler(self):
return SpacedDiffusionBeatGans(self)
class SpacedDiffusionBeatGans(GaussianDiffusionBeatGans):
"""
A diffusion process which can skip steps in a base diffusion process.
:param use_timesteps: a collection (sequence or set) of timesteps from the
original diffusion process to retain.
:param kwargs: the kwargs to create the base diffusion process.
"""
def __init__(self, conf: SpacedDiffusionBeatGansConfig):
self.conf = conf
self.use_timesteps = set(conf.use_timesteps)
# how the new t's mapped to the old t's
self.timestep_map = []
self.original_num_steps = len(conf.betas)
base_diffusion = GaussianDiffusionBeatGans(conf) # pylint: disable=missing-kwoa
last_alpha_cumprod = 1.0
new_betas = []
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
if i in self.use_timesteps:
# getting the new betas of the new timesteps
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
last_alpha_cumprod = alpha_cumprod
self.timestep_map.append(i)
conf.betas = np.array(new_betas)
super().__init__(conf)
def p_mean_variance(self, model: Model, *args, **kwargs): # pylint: disable=signature-differs
return super().p_mean_variance(self._wrap_model(model), *args,
**kwargs)
def training_losses(self, model: Model, *args, **kwargs): # pylint: disable=signature-differs
return super().training_losses(self._wrap_model(model), *args,
**kwargs)
def condition_mean(self, cond_fn, *args, **kwargs):
return super().condition_mean(self._wrap_model(cond_fn), *args,
**kwargs)
def condition_score(self, cond_fn, *args, **kwargs):
return super().condition_score(self._wrap_model(cond_fn), *args,
**kwargs)
def _wrap_model(self, model: Model):
if isinstance(model, _WrappedModel):
return model
return _WrappedModel(model, self.timestep_map, self.rescale_timesteps,
self.original_num_steps)
def _scale_timesteps(self, t):
# Scaling is done by the wrapped model.
return t
class _WrappedModel:
"""
converting the supplied t's to the old t's scales.
"""
def __init__(self, model, timestep_map, rescale_timesteps,
original_num_steps):
self.model = model
self.timestep_map = timestep_map
self.rescale_timesteps = rescale_timesteps
self.original_num_steps = original_num_steps
def forward(self, x, t, t_cond=None, **kwargs):
"""
Args:
t: t's with differrent ranges (can be << T due to smaller eval T) need to be converted to the original t's
t_cond: the same as t but can be of different values
"""
map_tensor = th.tensor(self.timestep_map,
device=t.device,
dtype=t.dtype)
def do(t):
new_ts = map_tensor[t]
if self.rescale_timesteps:
new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
return new_ts
if t_cond is not None:
# support t_cond
t_cond = do(t_cond)
return self.model(x=x, t=do(t), t_cond=t_cond, **kwargs)
def __getattr__(self, name):
# allow for calling the model's methods
if hasattr(self.model, name):
func = getattr(self.model, name)
return func
raise AttributeError(name)
|