File size: 4,831 Bytes
c2ced9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
from .DiffAE_support_templates import *


def latent_diffusion_config(conf: TrainConfig):
    conf.batch_size = 128
    conf.train_mode = TrainMode.latent_diffusion
    conf.latent_gen_type = GenerativeType.ddim
    conf.latent_loss_type = LossType.mse
    conf.latent_model_mean_type = ModelMeanType.eps
    conf.latent_model_var_type = ModelVarType.fixed_large
    conf.latent_rescale_timesteps = False
    conf.latent_clip_sample = False
    conf.latent_T_eval = 20
    conf.latent_znormalize = True
    conf.total_samples = 96_000_000
    conf.sample_every_samples = 400_000
    conf.eval_every_samples = 20_000_000
    conf.eval_ema_every_samples = 20_000_000
    conf.save_every_samples = 2_000_000
    return conf


def latent_diffusion128_config(conf: TrainConfig):
    conf = latent_diffusion_config(conf)
    conf.batch_size_eval = 32
    return conf


def latent_mlp_2048_norm_10layers(conf: TrainConfig):
    conf.net_latent_net_type = LatentNetType.skip
    conf.net_latent_layers = 10
    conf.net_latent_skip_layers = list(range(1, conf.net_latent_layers))
    conf.net_latent_activation = Activation.silu
    conf.net_latent_num_hid_channels = 2048
    conf.net_latent_use_norm = True
    conf.net_latent_condition_bias = 1
    return conf


def latent_mlp_2048_norm_20layers(conf: TrainConfig):
    conf = latent_mlp_2048_norm_10layers(conf)
    conf.net_latent_layers = 20
    conf.net_latent_skip_layers = list(range(1, conf.net_latent_layers))
    return conf


def latent_256_batch_size(conf: TrainConfig):
    conf.batch_size = 256
    conf.eval_ema_every_samples = 100_000_000
    conf.eval_every_samples = 100_000_000
    conf.sample_every_samples = 1_000_000
    conf.save_every_samples = 2_000_000
    conf.total_samples = 301_000_000
    return conf


def latent_512_batch_size(conf: TrainConfig):
    conf.batch_size = 512
    conf.eval_ema_every_samples = 100_000_000
    conf.eval_every_samples = 100_000_000
    conf.sample_every_samples = 1_000_000
    conf.save_every_samples = 5_000_000
    conf.total_samples = 501_000_000
    return conf


def latent_2048_batch_size(conf: TrainConfig):
    conf.batch_size = 2048
    conf.eval_ema_every_samples = 200_000_000
    conf.eval_every_samples = 200_000_000
    conf.sample_every_samples = 4_000_000
    conf.save_every_samples = 20_000_000
    conf.total_samples = 1_501_000_000
    return conf


def adamw_weight_decay(conf: TrainConfig):
    conf.optimizer = OptimizerType.adamw
    conf.weight_decay = 0.01
    return conf


def ffhq128_autoenc_latent():
    conf = pretrain_ffhq128_autoenc130M()
    conf = latent_diffusion128_config(conf)
    conf = latent_mlp_2048_norm_10layers(conf)
    conf = latent_256_batch_size(conf)
    conf = adamw_weight_decay(conf)
    conf.total_samples = 101_000_000
    conf.latent_loss_type = LossType.l1
    conf.latent_beta_scheduler = 'const0.008'
    conf.name = 'ffhq128_autoenc_latent'
    return conf


def ffhq256_autoenc_latent():
    conf = pretrain_ffhq256_autoenc()
    conf = latent_diffusion128_config(conf)
    conf = latent_mlp_2048_norm_10layers(conf)
    conf = latent_256_batch_size(conf)
    conf = adamw_weight_decay(conf)
    conf.total_samples = 101_000_000
    conf.latent_loss_type = LossType.l1
    conf.latent_beta_scheduler = 'const0.008'
    conf.eval_ema_every_samples = 200_000_000
    conf.eval_every_samples = 200_000_000
    conf.sample_every_samples = 4_000_000
    conf.name = 'ffhq256_autoenc_latent'
    return conf


def horse128_autoenc_latent():
    conf = pretrain_horse128()
    conf = latent_diffusion128_config(conf)
    conf = latent_2048_batch_size(conf)
    conf = latent_mlp_2048_norm_20layers(conf)
    conf.total_samples = 2_001_000_000
    conf.latent_beta_scheduler = 'const0.008'
    conf.latent_loss_type = LossType.l1
    conf.name = 'horse128_autoenc_latent'
    return conf


def bedroom128_autoenc_latent():
    conf = pretrain_bedroom128()
    conf = latent_diffusion128_config(conf)
    conf = latent_2048_batch_size(conf)
    conf = latent_mlp_2048_norm_20layers(conf)
    conf.total_samples = 2_001_000_000
    conf.latent_beta_scheduler = 'const0.008'
    conf.latent_loss_type = LossType.l1
    conf.name = 'bedroom128_autoenc_latent'
    return conf


def celeba64d2c_autoenc_latent():
    conf = pretrain_celeba64d2c_72M()
    conf = latent_diffusion_config(conf)
    conf = latent_512_batch_size(conf)
    conf = latent_mlp_2048_norm_10layers(conf)
    conf = adamw_weight_decay(conf)
    # just for the name
    conf.continue_from = PretrainConfig('200M',
                                        f'log-latent/{conf.name}/last.ckpt')
    conf.postfix = '_300M'
    conf.total_samples = 301_000_000
    conf.latent_beta_scheduler = 'const0.008'
    conf.latent_loss_type = LossType.l1
    conf.name = 'celeba64d2c_autoenc_latent'
    return conf