soumickmj's picture
Upload DiffAE
c2ced9d verified
raw
history blame
3.86 kB
"""
Various utilities for neural networks.
"""
from enum import Enum
import math
from typing import Optional
import torch as th
import torch.nn as nn
import torch.utils.checkpoint
import torch.nn.functional as F
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
# @th.jit.script
def forward(self, x):
return x * th.sigmoid(x)
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def update_ema(target_params, source_params, rate=0.99):
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def normalization(channels, limit=32):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:param limit: the maximum number of groups. It's required if the number of net_channel is too small. Default: 32 (Added by Soumick, default from original)
:return: an nn.Module for normalization.
"""
return GroupNorm32(min(limit, channels), channels)
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = th.exp(-math.log(max_period) *
th.arange(start=0, end=half, dtype=th.float32) /
half).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
if dim % 2:
embedding = th.cat(
[embedding, th.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def torch_checkpoint(func, args, flag, preserve_rng_state=False):
# torch's gradient checkpoint works with automatic mixed precision, given torch >= 1.8
if flag:
return torch.utils.checkpoint.checkpoint(
func, *args, preserve_rng_state=preserve_rng_state)
else:
return func(*args)