File size: 9,517 Bytes
9756d99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import re
from torch import device, dtype
from config import BertConfig, PretrainedConfig
from utils import *
class BertPreTrainedModel(nn.Module):
config_class = BertConfig
base_model_prefix = "bert"
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = None
def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
super().__init__()
self.config = config
self.name_or_path = config.name_or_path
def init_weights(self):
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@property
def dtype(self) -> dtype:
return get_parameter_dtype(self)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None)
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
mirror = kwargs.pop("mirror", None)
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
*model_args,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
**kwargs,
)
else:
model_kwargs = kwargs
# Load model
if pretrained_model_name_or_path is not None:
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
# Load from a PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME,
revision=revision,
mirror=mirror,
)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
)
except EnvironmentError as err:
#logger.error(err)
msg = (
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}.\n\n"
)
raise EnvironmentError(msg)
else:
resolved_archive_file = None
config.name_or_path = pretrained_model_name_or_path
# Instantiate model.
model = cls(config, *model_args, **model_kwargs)
if state_dict is None:
try:
state_dict = torch.load(resolved_archive_file, map_location="cpu", weights_only=True)
except Exception:
raise OSError(
f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
f"at '{resolved_archive_file}'"
)
missing_keys = []
unexpected_keys = []
error_msgs = []
# Convert old format to new format if needed from a PyTorch state_dict
old_keys = []
new_keys = []
m = {'embeddings.word_embeddings': 'word_embedding',
'embeddings.position_embeddings': 'pos_embedding',
'embeddings.token_type_embeddings': 'tk_type_embedding',
'embeddings.LayerNorm': 'embed_layer_norm',
'embeddings.dropout': 'embed_dropout',
'encoder.layer': 'bert_layers',
'pooler.dense': 'pooler_dense',
'pooler.activation': 'pooler_af',
'attention.self': "self_attention",
'attention.output.dense': 'attention_dense',
'attention.output.LayerNorm': 'attention_layer_norm',
'attention.output.dropout': 'attention_dropout',
'intermediate.dense': 'interm_dense',
'intermediate.intermediate_act_fn': 'interm_af',
'output.dense': 'out_dense',
'output.LayerNorm': 'out_layer_norm',
'output.dropout': 'out_dropout'}
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
for x, y in m.items():
if new_key is not None:
_key = new_key
else:
_key = key
if x in key:
new_key = _key.replace(x, y)
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
# print(old_key, new_key)
state_dict[new_key] = state_dict.pop(old_key)
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
your_bert_params = [f"bert.{x[0]}" for x in model.named_parameters()]
for k in state_dict:
if k not in your_bert_params and not k.startswith("cls."):
possible_rename = [x for x in k.split(".")[1:-1] if x in m.values()]
raise ValueError(f"{k} cannot be reload to your model, one/some of {possible_rename} we provided have been renamed")
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: nn.Module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict,
prefix,
local_metadata,
True,
missing_keys,
unexpected_keys,
error_msgs,
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
# Make sure we are able to load base models as well as derived models (with heads)
start_prefix = ""
model_to_load = model
has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
start_prefix = cls.base_model_prefix + "."
if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
model_to_load = getattr(model, cls.base_model_prefix)
load(model_to_load, prefix=start_prefix)
if model.__class__.__name__ != model_to_load.__class__.__name__:
base_model_state_dict = model_to_load.state_dict().keys()
head_model_state_dict_without_base_prefix = [
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
]
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
# Some models may have keys that are not in the state by design, removing them before needlessly warning
# the user.
if cls._keys_to_ignore_on_load_missing is not None:
for pat in cls._keys_to_ignore_on_load_missing:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(error_msgs)
)
)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
if output_loading_info:
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"error_msgs": error_msgs,
}
return model, loading_info
if hasattr(config, "xla_device") and config.xla_device and is_torch_tpu_available():
import torch_xla.core.xla_model as xm
model = xm.send_cpu_data_to_device(model, xm.xla_device())
model.to(xm.xla_device())
return model
|