File size: 8,857 Bytes
9756d99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
from typing import Union, Tuple, Dict, Any, Optional
import os
import json
from collections import OrderedDict
import torch
from utils import CONFIG_NAME, hf_bucket_url, cached_path, is_remote_url
class PretrainedConfig(object):
model_type: str = ""
is_composition: bool = False
def __init__(self, **kwargs):
# Attributes with defaults
self.return_dict = kwargs.pop("return_dict", True)
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
self.output_attentions = kwargs.pop("output_attentions", False)
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
self.pruned_heads = kwargs.pop("pruned_heads", {})
self.tie_word_embeddings = kwargs.pop(
"tie_word_embeddings", True
) # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models.
# Is decoder is used in encoder-decoder models to differentiate encoder from decoder
self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
self.is_decoder = kwargs.pop("is_decoder", False)
self.add_cross_attention = kwargs.pop("add_cross_attention", False)
self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False)
# Parameters for sequence generation
self.max_length = kwargs.pop("max_length", 20)
self.min_length = kwargs.pop("min_length", 0)
self.do_sample = kwargs.pop("do_sample", False)
self.early_stopping = kwargs.pop("early_stopping", False)
self.num_beams = kwargs.pop("num_beams", 1)
self.num_beam_groups = kwargs.pop("num_beam_groups", 1)
self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0)
self.temperature = kwargs.pop("temperature", 1.0)
self.top_k = kwargs.pop("top_k", 50)
self.top_p = kwargs.pop("top_p", 1.0)
self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
self.length_penalty = kwargs.pop("length_penalty", 1.0)
self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0)
self.bad_words_ids = kwargs.pop("bad_words_ids", None)
self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
self.output_scores = kwargs.pop("output_scores", False)
self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False)
self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)
# Fine-tuning task arguments
self.architectures = kwargs.pop("architectures", None)
self.finetuning_task = kwargs.pop("finetuning_task", None)
self.id2label = kwargs.pop("id2label", None)
self.label2id = kwargs.pop("label2id", None)
if self.id2label is not None:
kwargs.pop("num_labels", None)
self.id2label = dict((int(key), value) for key, value in self.id2label.items())
# Keys are always strings in JSON so convert ids to int here.
else:
self.num_labels = kwargs.pop("num_labels", 2)
# Tokenizer arguments
self.tokenizer_class = kwargs.pop("tokenizer_class", None)
self.prefix = kwargs.pop("prefix", None)
self.bos_token_id = kwargs.pop("bos_token_id", None)
self.pad_token_id = kwargs.pop("pad_token_id", None)
self.eos_token_id = kwargs.pop("eos_token_id", None)
self.sep_token_id = kwargs.pop("sep_token_id", None)
self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)
# task specific arguments
self.task_specific_params = kwargs.pop("task_specific_params", None)
# TPU arguments
self.xla_device = kwargs.pop("xla_device", None)
# Name or path to the pretrained checkpoint
self._name_or_path = str(kwargs.pop("name_or_path", ""))
# Drop the transformers version info
kwargs.pop("transformers_version", None)
# Additional attributes without default values
for key, value in kwargs.items():
try:
setattr(self, key, value)
except AttributeError as err:
raise err
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
return cls.from_dict(config_dict, **kwargs)
@classmethod
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return json.loads(text)
@classmethod
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig":
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
config = cls(**config_dict)
if hasattr(config, "pruned_heads"):
config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items())
# Update config with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
if return_unused_kwargs:
return config, kwargs
else:
return config
@classmethod
def get_config_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
else:
config_file = hf_bucket_url(
pretrained_model_name_or_path, filename=CONFIG_NAME, revision=revision, mirror=None
)
try:
# Load from URL or cache if already cached
resolved_config_file = cached_path(
config_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
)
# Load config dict
config_dict = cls._dict_from_json_file(resolved_config_file)
except EnvironmentError as err:
msg = (
f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
)
raise EnvironmentError(msg)
except json.JSONDecodeError:
msg = (
"Couldn't reach server at '{}' to download configuration file or "
"configuration file is not a valid JSON file. "
"Please check network or file content here: {}.".format(config_file, resolved_config_file)
)
raise EnvironmentError(msg)
return config_dict, kwargs
class BertConfig(PretrainedConfig):
model_type = "bert"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
gradient_checkpointing=False,
position_embedding_type="absolute",
use_cache=True,
**kwargs
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.gradient_checkpointing = gradient_checkpointing
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
|