File size: 8,857 Bytes
9756d99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from typing import Union, Tuple, Dict, Any, Optional
import os
import json
from collections import OrderedDict
import torch
from utils import CONFIG_NAME, hf_bucket_url, cached_path, is_remote_url

class PretrainedConfig(object):
  model_type: str = ""
  is_composition: bool = False

  def __init__(self, **kwargs):
    # Attributes with defaults
    self.return_dict = kwargs.pop("return_dict", True)
    self.output_hidden_states = kwargs.pop("output_hidden_states", False)
    self.output_attentions = kwargs.pop("output_attentions", False)
    self.torchscript = kwargs.pop("torchscript", False)  # Only used by PyTorch models
    self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
    self.pruned_heads = kwargs.pop("pruned_heads", {})
    self.tie_word_embeddings = kwargs.pop(
      "tie_word_embeddings", True
    )  # Whether input and output word embeddings should be tied for all MLM, LM and Seq2Seq models.

    # Is decoder is used in encoder-decoder models to differentiate encoder from decoder
    self.is_encoder_decoder = kwargs.pop("is_encoder_decoder", False)
    self.is_decoder = kwargs.pop("is_decoder", False)
    self.add_cross_attention = kwargs.pop("add_cross_attention", False)
    self.tie_encoder_decoder = kwargs.pop("tie_encoder_decoder", False)

    # Parameters for sequence generation
    self.max_length = kwargs.pop("max_length", 20)
    self.min_length = kwargs.pop("min_length", 0)
    self.do_sample = kwargs.pop("do_sample", False)
    self.early_stopping = kwargs.pop("early_stopping", False)
    self.num_beams = kwargs.pop("num_beams", 1)
    self.num_beam_groups = kwargs.pop("num_beam_groups", 1)
    self.diversity_penalty = kwargs.pop("diversity_penalty", 0.0)
    self.temperature = kwargs.pop("temperature", 1.0)
    self.top_k = kwargs.pop("top_k", 50)
    self.top_p = kwargs.pop("top_p", 1.0)
    self.repetition_penalty = kwargs.pop("repetition_penalty", 1.0)
    self.length_penalty = kwargs.pop("length_penalty", 1.0)
    self.no_repeat_ngram_size = kwargs.pop("no_repeat_ngram_size", 0)
    self.encoder_no_repeat_ngram_size = kwargs.pop("encoder_no_repeat_ngram_size", 0)
    self.bad_words_ids = kwargs.pop("bad_words_ids", None)
    self.num_return_sequences = kwargs.pop("num_return_sequences", 1)
    self.chunk_size_feed_forward = kwargs.pop("chunk_size_feed_forward", 0)
    self.output_scores = kwargs.pop("output_scores", False)
    self.return_dict_in_generate = kwargs.pop("return_dict_in_generate", False)
    self.forced_bos_token_id = kwargs.pop("forced_bos_token_id", None)
    self.forced_eos_token_id = kwargs.pop("forced_eos_token_id", None)

    # Fine-tuning task arguments
    self.architectures = kwargs.pop("architectures", None)
    self.finetuning_task = kwargs.pop("finetuning_task", None)
    self.id2label = kwargs.pop("id2label", None)
    self.label2id = kwargs.pop("label2id", None)
    if self.id2label is not None:
      kwargs.pop("num_labels", None)
      self.id2label = dict((int(key), value) for key, value in self.id2label.items())
      # Keys are always strings in JSON so convert ids to int here.
    else:
      self.num_labels = kwargs.pop("num_labels", 2)

    # Tokenizer arguments
    self.tokenizer_class = kwargs.pop("tokenizer_class", None)
    self.prefix = kwargs.pop("prefix", None)
    self.bos_token_id = kwargs.pop("bos_token_id", None)
    self.pad_token_id = kwargs.pop("pad_token_id", None)
    self.eos_token_id = kwargs.pop("eos_token_id", None)
    self.sep_token_id = kwargs.pop("sep_token_id", None)

    self.decoder_start_token_id = kwargs.pop("decoder_start_token_id", None)

    # task specific arguments
    self.task_specific_params = kwargs.pop("task_specific_params", None)

    # TPU arguments
    self.xla_device = kwargs.pop("xla_device", None)

    # Name or path to the pretrained checkpoint
    self._name_or_path = str(kwargs.pop("name_or_path", ""))

    # Drop the transformers version info
    kwargs.pop("transformers_version", None)

    # Additional attributes without default values
    for key, value in kwargs.items():
      try:
        setattr(self, key, value)
      except AttributeError as err:
        raise err

  @classmethod
  def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
    config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
    return cls.from_dict(config_dict, **kwargs)

  @classmethod
  def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
    with open(json_file, "r", encoding="utf-8") as reader:
      text = reader.read()
    return json.loads(text)

  @classmethod
  def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "PretrainedConfig":
    return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)

    config = cls(**config_dict)

    if hasattr(config, "pruned_heads"):
      config.pruned_heads = dict((int(key), value) for key, value in config.pruned_heads.items())

    # Update config with kwargs if needed
    to_remove = []
    for key, value in kwargs.items():
      if hasattr(config, key):
        setattr(config, key, value)
        to_remove.append(key)
    for key in to_remove:
      kwargs.pop(key, None)

    if return_unused_kwargs:
      return config, kwargs
    else:
      return config

  @classmethod
  def get_config_dict(
    cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
  ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
    cache_dir = kwargs.pop("cache_dir", None)
    force_download = kwargs.pop("force_download", False)
    resume_download = kwargs.pop("resume_download", False)
    proxies = kwargs.pop("proxies", None)
    use_auth_token = kwargs.pop("use_auth_token", None)
    local_files_only = kwargs.pop("local_files_only", False)
    revision = kwargs.pop("revision", None)

    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
    if os.path.isdir(pretrained_model_name_or_path):
      config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
    elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
      config_file = pretrained_model_name_or_path
    else:
      config_file = hf_bucket_url(
        pretrained_model_name_or_path, filename=CONFIG_NAME, revision=revision, mirror=None
      )

    try:
      # Load from URL or cache if already cached
      resolved_config_file = cached_path(
        config_file,
        cache_dir=cache_dir,
        force_download=force_download,
        proxies=proxies,
        resume_download=resume_download,
        local_files_only=local_files_only,
        use_auth_token=use_auth_token,
      )
      # Load config dict
      config_dict = cls._dict_from_json_file(resolved_config_file)

    except EnvironmentError as err:
      msg = (
        f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
        f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
        f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
      )
      raise EnvironmentError(msg)

    except json.JSONDecodeError:
      msg = (
        "Couldn't reach server at '{}' to download configuration file or "
        "configuration file is not a valid JSON file. "
        "Please check network or file content here: {}.".format(config_file, resolved_config_file)
      )
      raise EnvironmentError(msg)

    return config_dict, kwargs


class BertConfig(PretrainedConfig):
  model_type = "bert"

  def __init__(
    self,
    vocab_size=30522,
    hidden_size=768,
    num_hidden_layers=12,
    num_attention_heads=12,
    intermediate_size=3072,
    hidden_act="gelu",
    hidden_dropout_prob=0.1,
    attention_probs_dropout_prob=0.1,
    max_position_embeddings=512,
    type_vocab_size=2,
    initializer_range=0.02,
    layer_norm_eps=1e-12,
    pad_token_id=0,
    gradient_checkpointing=False,
    position_embedding_type="absolute",
    use_cache=True,
    **kwargs
  ):
    super().__init__(pad_token_id=pad_token_id, **kwargs)

    self.vocab_size = vocab_size
    self.hidden_size = hidden_size
    self.num_hidden_layers = num_hidden_layers
    self.num_attention_heads = num_attention_heads
    self.hidden_act = hidden_act
    self.intermediate_size = intermediate_size
    self.hidden_dropout_prob = hidden_dropout_prob
    self.attention_probs_dropout_prob = attention_probs_dropout_prob
    self.max_position_embeddings = max_position_embeddings
    self.type_vocab_size = type_vocab_size
    self.initializer_range = initializer_range
    self.layer_norm_eps = layer_norm_eps
    self.gradient_checkpointing = gradient_checkpointing
    self.position_embedding_type = position_embedding_type
    self.use_cache = use_cache