File size: 7,240 Bytes
a0b398e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from classifier_utils import *


TQDM_DISABLE=True


class BertSentimentClassifier(torch.nn.Module):
    def __init__(self, config, custom_bert = None):
        super(BertSentimentClassifier, self).__init__()
        self.num_labels = config.num_labels
        self.bert: BertModel = custom_bert or BertModel.from_pretrained('bert-base-uncased')

        # Pretrain mode does not require updating BERT paramters.
        assert config.fine_tune_mode in ["last-linear-layer", "full-model"]
        for param in self.bert.parameters():
            if config.fine_tune_mode == 'last-linear-layer':
                param.requires_grad = False
            elif config.fine_tune_mode == 'full-model':
                param.requires_grad = True

        # Classifier = Dropout + Linear
        self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
        self.classifier = torch.nn.Linear(config.hidden_size, self.num_labels)


    def forward(self, input_ids, attention_mask):
        outputs = self.bert(input_ids, attention_mask)
        pooler_output = outputs['pooler_output']

        return self.classifier(self.dropout(pooler_output))


# Evaluate the model on dev examples.
def model_eval(dataloader, model: BertSentimentClassifier, device):
    model.eval() # Switch to eval model, will turn off randomness like dropout.
    y_true = []
    y_pred = []
    sents = []
    sent_ids = []
    for step, batch in enumerate(tqdm(dataloader, desc=f'eval', leave=False, disable=TQDM_DISABLE)):
        b_labels, b_sents, b_sent_ids = batch['labels'], batch['sents'], batch['sent_ids']

        b_ids = batch['token_ids'].to(device)
        b_mask = batch['attention_mask'].to(device)

        logits = model(b_ids, b_mask)
        logits = logits.detach().cpu().numpy()
        preds = np.argmax(logits, axis=1).flatten()

        b_labels = b_labels.flatten()
        y_true.extend(b_labels)
        y_pred.extend(preds)
        sents.extend(b_sents)
        sent_ids.extend(b_sent_ids)

    f1 = f1_score(y_true, y_pred, average='macro')
    acc = accuracy_score(y_true, y_pred)

    return acc, f1, y_pred, y_true, sents, sent_ids


# Evaluate the model on test examples.
def model_test_eval(dataloader, model, device):
    model.eval() # Switch to eval model, will turn off randomness like dropout.
    y_pred = []
    sents = []
    sent_ids = []
    for step, batch in enumerate(tqdm(dataloader, desc=f'eval', leave=False, disable=TQDM_DISABLE)):
        b_sents, b_sent_ids = batch['sents'], batch['sent_ids']

        b_ids = batch['token_ids'].to(device)
        b_mask = batch['attention_mask'].to(device)

        logits = model(b_ids, b_mask)
        logits = logits.detach().cpu().numpy()
        preds = np.argmax(logits, axis=1).flatten()

        y_pred.extend(preds)
        sents.extend(b_sents)
        sent_ids.extend(b_sent_ids)

    return y_pred, sents, sent_ids


def save_model(model, args, config, filepath):
    save_info = {
        'model': model.state_dict(),
        'args': args,
        'model_config': config,
        'system_rng': random.getstate(),
        'numpy_rng': np.random.get_state(),
        'torch_rng': torch.random.get_rng_state(),
    }

    torch.save(save_info, filepath)
    print(f"save the model to {filepath}")


def train(args, custom_bert=None):
    device = torch.device('cuda') if USE_GPU else torch.device('cpu')
    # Create the data and its corresponding datasets and dataloader.
    train_data, num_labels = load_data(args.train, 'train')
    dev_data = load_data(args.dev, 'valid')

    train_dataset = SentimentDataset(train_data)
    dev_dataset = SentimentDataset(dev_data)

    train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size,
                                  num_workers=NUM_CPU_CORES, collate_fn=train_dataset.collate_fn)
    dev_dataloader = DataLoader(dev_dataset, shuffle=False, batch_size=args.batch_size,
                                num_workers=NUM_CPU_CORES, collate_fn=dev_dataset.collate_fn)

    # Init model.
    config = {'hidden_dropout_prob': HIDDEN_DROPOUT_PROB,
              'num_labels': num_labels,
              'hidden_size': 768,
              'data_dir': '.',
              'fine_tune_mode': args.fine_tune_mode}

    config = SimpleNamespace(**config)

    model = BertSentimentClassifier(config, custom_bert)
    model = model.to(device)

    lr = args.lr
    optimizer = AdamW(model.parameters(), lr=lr)
    best_dev_acc = 0

    # Run for the specified number of epochs.
    for epoch in range(EPOCHS):
        model.train()
        train_loss = 0
        num_batches = 0
        for batch in tqdm(train_dataloader, desc=f'train-{epoch}', leave=False, disable=TQDM_DISABLE):
            b_ids = batch['token_ids'].to(device)
            b_mask = batch['attention_mask'].to(device)
            b_labels = batch['labels'].to(device)

            optimizer.zero_grad()
            logits = model(b_ids, b_mask)
            loss = F.cross_entropy(logits, b_labels.view(-1), reduction='sum') / args.batch_size

            loss.backward()
            optimizer.step()

            train_loss += loss.item()
            num_batches += 1

        train_loss = train_loss / (num_batches)

        train_acc, train_f1, *_  = model_eval(train_dataloader, model, device)
        dev_acc, dev_f1, *_ = model_eval(dev_dataloader, model, device)

        if dev_acc > best_dev_acc:
            best_dev_acc = dev_acc
            save_model(model, args, config, args.filepath)

        print(f"Epoch {epoch}: train loss :: {train_loss :.3f}, train acc :: {train_acc :.3f}, dev acc :: {dev_acc :.3f}")


def test(args):
    with torch.no_grad():
        device = torch.device('cuda') if USE_GPU else torch.device('cpu')
        saved = torch.load(args.filepath, weights_only=False)
        config = saved['model_config']
        model = BertSentimentClassifier(config)
        model.load_state_dict(saved['model'])
        model = model.to(device)
        print(f"load model from {args.filepath}")
        
        dev_data = load_data(args.dev, 'valid')
        dev_dataset = SentimentDataset(dev_data)
        dev_dataloader = DataLoader(dev_dataset, shuffle=False, batch_size=args.batch_size,
                                    num_workers=NUM_CPU_CORES, collate_fn=dev_dataset.collate_fn)

        dev_acc, dev_f1, dev_pred, dev_true, dev_sents, dev_sent_ids = model_eval(dev_dataloader, model, device)
        print('DONE DEV')
        print(f"dev acc :: {dev_acc :.3f}")


def classifier_run(args, custom_bert=None):
    seed_everything(SEED)
    torch.set_num_threads(NUM_CPU_CORES)
    
    print(f'Training Sentiment Classifier on {args.dataset}...')
    config = SimpleNamespace(
        filepath=f'/kaggle/working/{args.dataset}-classifier.pt',
        lr=args.lr,
        batch_size=args.batch_size,
        fine_tune_mode=args.fine_tune_mode,
        train=args.train, dev=args.dev, test=args.test,
        dev_out  = f'/kaggle/working/predictions/{args.fine_tune_mode}-{args.dataset}-dev-out.csv',
        test_out = f'/kaggle/working/predictions/{args.fine_tune_mode}-{args.dataset}-test-out.csv'
    )

    train(config, custom_bert)

    print(f'Evaluating on {args.dataset}...')
    test(config)