File size: 7,306 Bytes
a0b398e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from everything import *
from bert import BertModel
from optimizer import AdamW
from tokenizer import BertTokenizer


tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')


class SentimentDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        return self.dataset[idx]

    def pad_data(self, data):
        sents = [x[0] for x in data]
        labels = [x[1] for x in data]
        sent_ids = [x[2] for x in data]

        encoding = tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
        token_ids = torch.LongTensor(encoding['input_ids'])
        attention_mask = torch.LongTensor(encoding['attention_mask'])
        labels = torch.LongTensor(labels)

        return token_ids, attention_mask, labels, sents, sent_ids

    def collate_fn(self, all_data):
        token_ids, attention_mask, labels, sents, sent_ids = self.pad_data(all_data)

        batched_data = {
            'token_ids': token_ids,
            'attention_mask': attention_mask,
            'labels': labels,
            'sents': sents,
            'sent_ids': sent_ids
        }

        return batched_data


class SentimentTestDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)

    def __getitem__(self, idx):
        return self.dataset[idx]

    def pad_data(self, data):
        sents = [x[0] for x in data]
        sent_ids = [x[1] for x in data]

        encoding = tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
        token_ids = torch.LongTensor(encoding['input_ids'])
        attention_mask = torch.LongTensor(encoding['attention_mask'])

        return token_ids, attention_mask, sents, sent_ids

    def collate_fn(self, all_data):
        token_ids, attention_mask, sents, sent_ids= self.pad_data(all_data)

        batched_data = {
            'token_ids': token_ids,
            'attention_mask': attention_mask,
            'sents': sents,
            'sent_ids': sent_ids
        }

        return batched_data


class AmazonDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        return self.dataset[idx]
    
    def pad_data(self, data):
        sents = [x[0] for x in data]
        sent_ids = [x[1] for x in data]
        encoding = tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
        token_ids = torch.LongTensor(encoding['input_ids'])
        attension_mask = torch.LongTensor(encoding['attention_mask'])

        return token_ids, attension_mask, sent_ids
    
    def collate_fn(self, data):
        token_ids, attention_mask, sent_ids = self.pad_data(data)

        batched_data = {
            'token_ids': token_ids,
            'attention_mask': attention_mask,
            'sent_ids': sent_ids
        }

        return batched_data


class SemanticDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        return self.dataset[idx]
    
    def pad_data(self, data):
        sents1 = [x[0] for x in data]
        sents2 = [x[1] for x in data]
        score = [x[2] for x in data]
        sent_ids = [x[3] for x in data]
        encoding = tokenizer(sents1 + sents2, return_tensors='pt', padding=True, truncation=True)
        token_ids = torch.LongTensor(encoding['input_ids'])
        attension_mask = torch.LongTensor(encoding['attention_mask'])

        return token_ids, attension_mask, score, sent_ids
    
    def collate_fn(self, data):
        token_ids, attention_mask, score, sent_ids = self.pad_data(data)
        n = len(sent_ids)

        batched_data = {
            'token_ids_1': token_ids[:n],
            'token_ids_2': token_ids[n:],
            'attention_mask_1': attention_mask[:n],
            'attention_mask_2': attention_mask[n:],
            'score': score,
            'sent_ids': sent_ids
        }

        return batched_data

        
class InferenceDataset(Dataset):
    def __init__(self, dataset):
        self.dataset = dataset

    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        return self.dataset[idx]
    
    def pad_data(self, data):
        anchor = [x[0] for x in data]
        positive = [x[1] for x in data]
        negative = [x[2] for x in data]
        sent_ids = [x[3] for x in data]
        encoding = tokenizer(anchor + positive + negative, return_tensors='pt', padding=True, truncation=True)
        token_ids = torch.LongTensor(encoding['input_ids'])
        attension_mask = torch.LongTensor(encoding['attention_mask'])

        return token_ids, attension_mask, sent_ids
    
    def collate_fn(self, data):
        token_ids, attention_mask, sent_ids = self.pad_data(data)
        n = len(sent_ids)

        batched_data = {
            'anchor_ids': token_ids[:n],
            'positive_ids': token_ids[n:2*n],
            'negative_ids': token_ids[2*n:],
            'anchor_masks': attention_mask[:n],
            'positive_masks': attention_mask[n:2*n],
            'negative_masks': attention_mask[2*n:],
            'sent_ids': sent_ids
        }

        return batched_data


def load_data(filename, flag='train'):
    '''
    - for amazon dataset: list of (sent, id)
    - for nli dataset: list of (anchor, positive, negative, id)
    - for stsb dataset: list of (sentence1, sentence2, score, id)

    - for test dataset: list of (sent, id)
    - for train dataset: list of (sent, label, id)
    '''

    if flag == 'amazon':
        df = pd.read_parquet(filename)
        data = list(zip(df['content'], df.index))
    elif flag == 'nli':
        df = pd.read_parquet(filename)
        data = list(zip(df['anchor'], df['positive'], df['negative'], df.index))
    elif flag == 'stsb':
        df = pd.read_parquet(filename)
        data = list(zip(df['sentence1'], df['sentence2'], df['score'], df.index))
    else:
        data, num_labels = [], set()

        with open(filename, 'r') as fp:
            if flag == 'test':
                for record in csv.DictReader(fp, delimiter = '\t'):
                    sent = record['sentence'].lower().strip()
                    sent_id = record['id'].lower().strip()
                    data.append((sent,sent_id))
            else:
                for record in csv.DictReader(fp, delimiter = '\t'):
                    sent = record['sentence'].lower().strip()
                    sent_id = record['id'].lower().strip()
                    label = int(record['sentiment'].strip())
                    num_labels.add(label)
                    data.append((sent, label, sent_id))

    print(f"load {len(data)} data from {filename}")
    if flag == "train":
        return data, len(num_labels)
    else:
        return data


def seed_everything(seed=11711):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True