File size: 7,306 Bytes
a0b398e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from everything import *
from bert import BertModel
from optimizer import AdamW
from tokenizer import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
class SentimentDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
labels = [x[1] for x in data]
sent_ids = [x[2] for x in data]
encoding = tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
labels = torch.LongTensor(labels)
return token_ids, attention_mask, labels, sents, sent_ids
def collate_fn(self, all_data):
token_ids, attention_mask, labels, sents, sent_ids = self.pad_data(all_data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'labels': labels,
'sents': sents,
'sent_ids': sent_ids
}
return batched_data
class SentimentTestDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
sent_ids = [x[1] for x in data]
encoding = tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
return token_ids, attention_mask, sents, sent_ids
def collate_fn(self, all_data):
token_ids, attention_mask, sents, sent_ids= self.pad_data(all_data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'sents': sents,
'sent_ids': sent_ids
}
return batched_data
class AmazonDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
sent_ids = [x[1] for x in data]
encoding = tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attension_mask = torch.LongTensor(encoding['attention_mask'])
return token_ids, attension_mask, sent_ids
def collate_fn(self, data):
token_ids, attention_mask, sent_ids = self.pad_data(data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'sent_ids': sent_ids
}
return batched_data
class SemanticDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents1 = [x[0] for x in data]
sents2 = [x[1] for x in data]
score = [x[2] for x in data]
sent_ids = [x[3] for x in data]
encoding = tokenizer(sents1 + sents2, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attension_mask = torch.LongTensor(encoding['attention_mask'])
return token_ids, attension_mask, score, sent_ids
def collate_fn(self, data):
token_ids, attention_mask, score, sent_ids = self.pad_data(data)
n = len(sent_ids)
batched_data = {
'token_ids_1': token_ids[:n],
'token_ids_2': token_ids[n:],
'attention_mask_1': attention_mask[:n],
'attention_mask_2': attention_mask[n:],
'score': score,
'sent_ids': sent_ids
}
return batched_data
class InferenceDataset(Dataset):
def __init__(self, dataset):
self.dataset = dataset
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
anchor = [x[0] for x in data]
positive = [x[1] for x in data]
negative = [x[2] for x in data]
sent_ids = [x[3] for x in data]
encoding = tokenizer(anchor + positive + negative, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attension_mask = torch.LongTensor(encoding['attention_mask'])
return token_ids, attension_mask, sent_ids
def collate_fn(self, data):
token_ids, attention_mask, sent_ids = self.pad_data(data)
n = len(sent_ids)
batched_data = {
'anchor_ids': token_ids[:n],
'positive_ids': token_ids[n:2*n],
'negative_ids': token_ids[2*n:],
'anchor_masks': attention_mask[:n],
'positive_masks': attention_mask[n:2*n],
'negative_masks': attention_mask[2*n:],
'sent_ids': sent_ids
}
return batched_data
def load_data(filename, flag='train'):
'''
- for amazon dataset: list of (sent, id)
- for nli dataset: list of (anchor, positive, negative, id)
- for stsb dataset: list of (sentence1, sentence2, score, id)
- for test dataset: list of (sent, id)
- for train dataset: list of (sent, label, id)
'''
if flag == 'amazon':
df = pd.read_parquet(filename)
data = list(zip(df['content'], df.index))
elif flag == 'nli':
df = pd.read_parquet(filename)
data = list(zip(df['anchor'], df['positive'], df['negative'], df.index))
elif flag == 'stsb':
df = pd.read_parquet(filename)
data = list(zip(df['sentence1'], df['sentence2'], df['score'], df.index))
else:
data, num_labels = [], set()
with open(filename, 'r') as fp:
if flag == 'test':
for record in csv.DictReader(fp, delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
data.append((sent,sent_id))
else:
for record in csv.DictReader(fp, delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
label = int(record['sentiment'].strip())
num_labels.add(label)
data.append((sent, label, sent_id))
print(f"load {len(data)} data from {filename}")
if flag == "train":
return data, len(num_labels)
else:
return data
def seed_everything(seed=11711):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True |