File size: 8,359 Bytes
7587354 897eef4 02b98f5 7587354 02b98f5 7587354 897eef4 7587354 897eef4 7587354 897eef4 7587354 897eef4 7587354 897eef4 7587354 897eef4 7587354 02b98f5 897eef4 7587354 897eef4 7587354 897eef4 7587354 02b98f5 7587354 897eef4 7587354 897eef4 7587354 897eef4 7587354 897eef4 7587354 02b98f5 7587354 897eef4 7587354 02b98f5 7587354 897eef4 02b98f5 7587354 02b98f5 897eef4 02b98f5 7587354 dfcb0a5 7587354 897eef4 7587354 dfcb0a5 897eef4 7587354 02b98f5 7587354 897eef4 02b98f5 897eef4 7587354 02b98f5 7587354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import csv
import torch
import random
import argparse
import numpy as np
import pandas as pd
import torch.nn.functional as F
from tqdm import tqdm
from torch import Tensor
from types import SimpleNamespace
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import f1_score, accuracy_score
from bert import BertModel
from optimizer import AdamW
from classifier import seed_everything, tokenizer
from classifier import SentimentDataset, BertSentimentClassifier
TQDM_DISABLE = False
class AmazonDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
sent_ids = [x[1] for x in data]
encoding = tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attension_mask = torch.LongTensor(encoding['attention_mask'])
return token_ids, attension_mask, sent_ids
def collate_fn(self, data):
token_ids, attention_mask, sent_ids = self.pad_data(data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'sent_ids': sent_ids
}
return batched_data
def load_data(filename, flag='train'):
'''
- for amazon dataset: list of (sent, sent_id)
- for test dataset: list of (sent, sent_id)
- for train dataset: list of (sent, label, sent_id)
'''
if flag == 'amazon':
df = pd.read_parquet(filename)
data = list(zip(df['content'], df.index))
else:
data, num_labels = [], set()
with open(filename, 'r') as fp:
if flag == 'test':
for record in csv.DictReader(fp, delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
data.append((sent,sent_id))
else:
for record in csv.DictReader(fp, delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
label = int(record['sentiment'].strip())
num_labels.add(label)
data.append((sent, label, sent_id))
print(f"load {len(data)} data from {filename}")
if flag in ['test', 'amazon']:
return data
else:
return data, len(num_labels)
def save_model(model, optimizer, args, config, filepath):
save_info = {
'model': model.state_dict(),
'optim': optimizer.state_dict(),
'args': args,
'model_config': config,
'system_rng': random.getstate(),
'numpy_rng': np.random.get_state(),
'torch_rng': torch.random.get_rng_state(),
}
torch.save(save_info, filepath)
print(f"save the model to {filepath}")
def contrastive_loss(embeds_1: Tensor, embeds_2: Tensor, temp=0.05):
'''
embeds_1: [batch_size, hidden_size]
embeds_2: [batch_size, hidden_size]
'''
# [batch_size, batch_size]
sim_matrix = F.cosine_similarity(embeds_1.unsqueeze(1), embeds_2.unsqueeze(0), dim=-1) / temp
# [batch_size]
positive_sim = torch.diagonal(sim_matrix)
# [batch_size]
nume = torch.exp(positive_sim)
# [batch_size]
deno = torch.exp(sim_matrix).sum(1)
# [batch_size]
loss_per_batch = -torch.log(nume / deno)
return loss_per_batch.mean()
def train(args):
'''
Training Pipeline
-----------------
1. Load the Amazon Polarity and SST Dataset.
2. Determine batch_size (64) and number of batches (?).
3. Initialize SentimentClassifier (including bert).
4. Looping through 10 epoches.
5. Finetune minBERT with SimCSE loss function.
6. Finetune Classifier with cross-entropy function.
7. Backpropagation using Adam Optimizer for both.
8. Evaluating the model on dev dataset.
9. If dev_acc > best_dev_acc: save_model(...)
'''
amazon_data = load_data(args.train_bert, 'amazon')
train_data, num_labels = load_data(args.train, 'train')
dev_data = load_data(args.dev, 'valid')
amazon_dataset = AmazonDataset(amazon_data, args)
train_dataset = SentimentDataset(train_data, args)
dev_dataset = SentimentDataset(dev_data, args)
amazon_dataloader = DataLoader(amazon_dataset, shuffle=True, batch_size=args.batch_size_cse,
num_workers=args.num_cpu_cores, collate_fn=amazon_dataset.collate_fn)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size_classifier,
num_workers=args.num_cpu_cores, collate_fn=train_dataset.collate_fn)
dev_dataloader = DataLoader(dev_dataset, shuffle=False, batch_size=args.batch_size_classifier,
num_workers=args.num_cpu_cores, collate_fn=dev_dataset.collate_fn)
config = SimpleNamespace(
hidden_dropout_prob=args.hidden_dropout_prob,
num_labels=num_labels,
hidden_size=768,
data_dir='.',
fine_tune_mode='full-model'
)
device = torch.device('cuda') if args.use_gpu else torch.device('cpu')
model = BertSentimentClassifier(config)
model = model.to(device)
optimizer_cse = AdamW(model.bert.parameters(), lr=args.lr_cse)
optimizer_classifier = AdamW(model.parameters(), lr=args.lr_classifier)
best_dev_acc = 0
# ---- Training minBERT using SimCSE ---- #
for epoch in range(args.epochs):
model.bert.train()
train_loss = num_batches = 0
for batch in tqdm(amazon_dataloader, f'train-amazon-{epoch}', leave=False, disable=TQDM_DISABLE):
b_ids, b_mask = batch['token_ids'], batch['attention_mask']
b_ids = b_ids.to(device)
b_mask = b_mask.to(device)
# Get different embeddings with different dropout masks
logits_1 = model.bert(b_ids, b_mask)['pooler_output']
logits_2 = model.bert(b_ids, b_mask)['pooler_output']
# Calculate mean SimCSE loss function
loss = contrastive_loss(logits_1, logits_2)
# Back propagation
optimizer_cse.zero_grad()
loss.backward()
optimizer_cse.step()
train_loss += loss.item()
num_batches += 1
train_loss = train_loss / num_batches
print(f"Epoch {epoch}: train loss :: {train_loss :.3f}")
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=11711)
parser.add_argument("--num-cpu-cores", type=int, default=8)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--use_gpu", action='store_true')
parser.add_argument("--batch_size_cse", type=int, default=8)
parser.add_argument("--batch_size_sst", type=int, default=64)
parser.add_argument("--batch_size_cfimdb", type=int, default=8)
parser.add_argument("--hidden_dropout_prob", type=float, default=0.3)
parser.add_argument("--lr_cse", type=float, default=1e-5)
parser.add_argument("--lr_classifier", type=float, default=1e-5)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = get_args()
seed_everything(args.seed)
torch.set_num_threads(args.num_cpu_cores)
print('Finetuning minBERT with Unsupervised SimCSE...')
config = SimpleNamespace(
filepath='contrastive-nli.pt',
lr_cse=args.lr_cse,
lr_classifier=args.lr_classifier,
num_cpu_cores=args.num_cpu_cores,
use_gpu=args.use_gpu,
epochs=args.epochs,
batch_size_cse=args.batch_size_cse,
batch_size_classifier=args.batch_size_sst,
hidden_dropout_prob=args.hidden_dropout_prob,
train_bert='data/amazon-polarity.parquet',
train='data/ids-sst-train.csv',
dev='data/ids-sst-dev.csv',
test='data/ids-sst-test-student.csv'
)
train(config)
# model = BertModel.from_pretrained('bert-base-uncased')
# model.eval()
# s = set()
# for param in model.parameters():
# s.add(param.requires_grad)
# print(s) |