minBERT / base_bert.py
GlowCheese's picture
contrastive commit 1
7587354
raw
history blame
10.8 kB
import re
from torch import device, dtype
from config import BertConfig, PretrainedConfig
from utils import *
class BertPreTrainedModel(nn.Module):
config_class = BertConfig
base_model_prefix = "bert"
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = None
def __init__(self, config: PretrainedConfig, *inputs, **kwargs):
super().__init__()
self.config = config
self.name_or_path = config.name_or_path
def init_weights(self):
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module):
""" Initialize the weights """
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@property
def dtype(self) -> dtype:
return get_parameter_dtype(self)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], *model_args, **kwargs):
config = kwargs.pop("config", None)
state_dict = kwargs.pop("state_dict", None)
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
output_loading_info = kwargs.pop("output_loading_info", False)
local_files_only = kwargs.pop("local_files_only", False)
use_auth_token = kwargs.pop("use_auth_token", None)
revision = kwargs.pop("revision", None)
mirror = kwargs.pop("mirror", None)
# Load config if we don't provide a configuration
if not isinstance(config, PretrainedConfig):
config_path = config if config is not None else pretrained_model_name_or_path
config, model_kwargs = cls.config_class.from_pretrained(
config_path,
*model_args,
cache_dir=cache_dir,
return_unused_kwargs=True,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
revision=revision,
**kwargs,
)
else:
model_kwargs = kwargs
# Load model
if pretrained_model_name_or_path is not None:
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
# Load from a PyTorch checkpoint
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
archive_file = pretrained_model_name_or_path
else:
archive_file = hf_bucket_url(
pretrained_model_name_or_path,
filename=WEIGHTS_NAME,
revision=revision,
mirror=mirror,
)
try:
# Load from URL or cache if already cached
resolved_archive_file = cached_path(
archive_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
)
except EnvironmentError as err:
#logger.error(err)
msg = (
f"Can't load weights for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a file named one of {WEIGHTS_NAME}.\n\n"
)
raise EnvironmentError(msg)
else:
resolved_archive_file = None
config.name_or_path = pretrained_model_name_or_path
# Instantiate model.
model = cls(config, *model_args, **model_kwargs)
if state_dict is None:
try:
state_dict = torch.load(resolved_archive_file, map_location="cpu", weights_only=True)
except Exception:
raise OSError(
f"Unable to load weights from pytorch checkpoint file for '{pretrained_model_name_or_path}' "
f"at '{resolved_archive_file}'"
)
missing_keys = []
unexpected_keys = []
error_msgs = []
# Convert old format to new format if needed from a PyTorch state_dict
old_keys = []
new_keys = []
m = {'embeddings.word_embeddings': 'word_embedding',
'embeddings.position_embeddings': 'pos_embedding',
'embeddings.token_type_embeddings': 'tk_type_embedding',
'embeddings.LayerNorm': 'embed_layer_norm',
'embeddings.dropout': 'embed_dropout',
'encoder.layer': 'bert_layers',
'pooler.dense': 'pooler_dense',
'pooler.activation': 'pooler_af',
'attention.self': "self_attention",
'attention.output.dense': 'attention_dense',
'attention.output.LayerNorm': 'attention_layer_norm',
'attention.output.dropout': 'attention_dropout',
'intermediate.dense': 'interm_dense',
'intermediate.intermediate_act_fn': 'interm_af',
'output.dense': 'out_dense',
'output.LayerNorm': 'out_layer_norm',
'output.dropout': 'out_dropout'}
for key in state_dict.keys():
new_key = None
if "gamma" in key:
new_key = key.replace("gamma", "weight")
if "beta" in key:
new_key = key.replace("beta", "bias")
for x, y in m.items():
if new_key is not None:
_key = new_key
else:
_key = key
if x in key:
new_key = _key.replace(x, y)
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
# print(old_key, new_key)
state_dict[new_key] = state_dict.pop(old_key)
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, "_metadata", None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
your_bert_params = [f"bert.{x[0]}" for x in model.named_parameters()]
for k in state_dict:
if k not in your_bert_params and not k.startswith("cls."):
possible_rename = [x for x in k.split(".")[1:-1] if x in m.values()]
raise ValueError(f"{k} cannot be reload to your model, one/some of {possible_rename} we provided have been renamed")
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
# so we need to apply the function recursively.
def load(module: nn.Module, prefix=""):
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
module._load_from_state_dict(
state_dict,
prefix,
local_metadata,
True,
missing_keys,
unexpected_keys,
error_msgs,
)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + ".")
# Make sure we are able to load base models as well as derived models (with heads)
start_prefix = ""
model_to_load = model
has_prefix_module = any(s.startswith(cls.base_model_prefix) for s in state_dict.keys())
if not hasattr(model, cls.base_model_prefix) and has_prefix_module:
start_prefix = cls.base_model_prefix + "."
if hasattr(model, cls.base_model_prefix) and not has_prefix_module:
model_to_load = getattr(model, cls.base_model_prefix)
load(model_to_load, prefix=start_prefix)
if model.__class__.__name__ != model_to_load.__class__.__name__:
base_model_state_dict = model_to_load.state_dict().keys()
head_model_state_dict_without_base_prefix = [
key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys()
]
missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict)
# Some models may have keys that are not in the state by design, removing them before needlessly warning
# the user.
if cls._keys_to_ignore_on_load_missing is not None:
for pat in cls._keys_to_ignore_on_load_missing:
missing_keys = [k for k in missing_keys if re.search(pat, k) is None]
if cls._keys_to_ignore_on_load_unexpected is not None:
for pat in cls._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(error_msgs) > 0:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(error_msgs)
)
)
# Set model in evaluation mode to deactivate DropOut modules by default
model.eval()
if output_loading_info:
loading_info = {
"missing_keys": missing_keys,
"unexpected_keys": unexpected_keys,
"error_msgs": error_msgs,
}
return model, loading_info
if hasattr(config, "xla_device") and config.xla_device and is_torch_tpu_available():
import torch_xla.core.xla_model as xm
model = xm.send_cpu_data_to_device(model, xm.xla_device())
model.to(xm.xla_device())
return model