|
import torch |
|
import numpy as np |
|
from optimizer import AdamW |
|
|
|
seed = 0 |
|
|
|
|
|
def test_optimizer(opt_class) -> torch.Tensor: |
|
rng = np.random.default_rng(seed) |
|
torch.manual_seed(seed) |
|
model = torch.nn.Linear(3, 2, bias=False) |
|
opt = opt_class( |
|
model.parameters(), |
|
lr=1e-3, |
|
weight_decay=1e-4, |
|
correct_bias=True, |
|
) |
|
for i in range(1000): |
|
opt.zero_grad() |
|
x = torch.FloatTensor(rng.uniform(size=[model.in_features])) |
|
y_hat = model(x) |
|
y = torch.Tensor([x[0] + x[1], -x[2]]) |
|
loss = ((y - y_hat) ** 2).sum() |
|
loss.backward() |
|
opt.step() |
|
return model.weight.detach() |
|
|
|
|
|
ref = torch.tensor(np.load("optimizer_test.npy")) |
|
actual = test_optimizer(AdamW) |
|
print(ref) |
|
print(actual) |
|
assert torch.allclose(ref, actual, atol=1e-6, rtol=1e-4) |
|
print("Optimizer test passed!") |
|
|