minBERT / datasets.py
GlowCheese's picture
First model version
9756d99
raw
history blame
10 kB
#!/usr/bin/env python3
'''
This module contains our Dataset classes and functions that load the three datasets
for training and evaluating multitask BERT.
Feel free to edit code in this file if you wish to modify the way in which the data
examples are preprocessed.
'''
import csv
import torch
from torch.utils.data import Dataset
from tokenizer import BertTokenizer
def preprocess_string(s):
return ' '.join(s.lower()
.replace('.', ' .')
.replace('?', ' ?')
.replace(',', ' ,')
.replace('\'', ' \'')
.split())
class SentenceClassificationDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
labels = [x[1] for x in data]
sent_ids = [x[2] for x in data]
encoding = self.tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
labels = torch.LongTensor(labels)
return token_ids, attention_mask, labels, sents, sent_ids
def collate_fn(self, all_data):
token_ids, attention_mask, labels, sents, sent_ids= self.pad_data(all_data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'labels': labels,
'sents': sents,
'sent_ids': sent_ids
}
return batched_data
# Unlike SentenceClassificationDataset, we do not load labels in SentenceClassificationTestDataset.
class SentenceClassificationTestDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sents = [x[0] for x in data]
sent_ids = [x[1] for x in data]
encoding = self.tokenizer(sents, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding['input_ids'])
attention_mask = torch.LongTensor(encoding['attention_mask'])
return token_ids, attention_mask, sents, sent_ids
def collate_fn(self, all_data):
token_ids, attention_mask, sents, sent_ids= self.pad_data(all_data)
batched_data = {
'token_ids': token_ids,
'attention_mask': attention_mask,
'sents': sents,
'sent_ids': sent_ids
}
return batched_data
class SentencePairDataset(Dataset):
def __init__(self, dataset, args, isRegression=False):
self.dataset = dataset
self.p = args
self.isRegression = isRegression
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sent1 = [x[0] for x in data]
sent2 = [x[1] for x in data]
labels = [x[2] for x in data]
sent_ids = [x[3] for x in data]
encoding1 = self.tokenizer(sent1, return_tensors='pt', padding=True, truncation=True)
encoding2 = self.tokenizer(sent2, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding1['input_ids'])
attention_mask = torch.LongTensor(encoding1['attention_mask'])
token_type_ids = torch.LongTensor(encoding1['token_type_ids'])
token_ids2 = torch.LongTensor(encoding2['input_ids'])
attention_mask2 = torch.LongTensor(encoding2['attention_mask'])
token_type_ids2 = torch.LongTensor(encoding2['token_type_ids'])
if self.isRegression:
labels = torch.DoubleTensor(labels)
else:
labels = torch.LongTensor(labels)
return (token_ids, token_type_ids, attention_mask,
token_ids2, token_type_ids2, attention_mask2,
labels,sent_ids)
def collate_fn(self, all_data):
(token_ids, token_type_ids, attention_mask,
token_ids2, token_type_ids2, attention_mask2,
labels, sent_ids) = self.pad_data(all_data)
batched_data = {
'token_ids_1': token_ids,
'token_type_ids_1': token_type_ids,
'attention_mask_1': attention_mask,
'token_ids_2': token_ids2,
'token_type_ids_2': token_type_ids2,
'attention_mask_2': attention_mask2,
'labels': labels,
'sent_ids': sent_ids
}
return batched_data
# Unlike SentencePairDataset, we do not load labels in SentencePairTestDataset.
class SentencePairTestDataset(Dataset):
def __init__(self, dataset, args):
self.dataset = dataset
self.p = args
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
return self.dataset[idx]
def pad_data(self, data):
sent1 = [x[0] for x in data]
sent2 = [x[1] for x in data]
sent_ids = [x[2] for x in data]
encoding1 = self.tokenizer(sent1, return_tensors='pt', padding=True, truncation=True)
encoding2 = self.tokenizer(sent2, return_tensors='pt', padding=True, truncation=True)
token_ids = torch.LongTensor(encoding1['input_ids'])
attention_mask = torch.LongTensor(encoding1['attention_mask'])
token_type_ids = torch.LongTensor(encoding1['token_type_ids'])
token_ids2 = torch.LongTensor(encoding2['input_ids'])
attention_mask2 = torch.LongTensor(encoding2['attention_mask'])
token_type_ids2 = torch.LongTensor(encoding2['token_type_ids'])
return (token_ids, token_type_ids, attention_mask,
token_ids2, token_type_ids2, attention_mask2,
sent_ids)
def collate_fn(self, all_data):
(token_ids, token_type_ids, attention_mask,
token_ids2, token_type_ids2, attention_mask2,
sent_ids) = self.pad_data(all_data)
batched_data = {
'token_ids_1': token_ids,
'token_type_ids_1': token_type_ids,
'attention_mask_1': attention_mask,
'token_ids_2': token_ids2,
'token_type_ids_2': token_type_ids2,
'attention_mask_2': attention_mask2,
'sent_ids': sent_ids
}
return batched_data
def load_multitask_data(sentiment_filename,paraphrase_filename,similarity_filename,split='train'):
sentiment_data = []
num_labels = {}
if split == 'test':
with open(sentiment_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
sentiment_data.append((sent,sent_id))
else:
with open(sentiment_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent = record['sentence'].lower().strip()
sent_id = record['id'].lower().strip()
label = int(record['sentiment'].strip())
if label not in num_labels:
num_labels[label] = len(num_labels)
sentiment_data.append((sent, label,sent_id))
print(f"Loaded {len(sentiment_data)} {split} examples from {sentiment_filename}")
paraphrase_data = []
if split == 'test':
with open(paraphrase_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent_id = record['id'].lower().strip()
paraphrase_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2']),
sent_id))
else:
with open(paraphrase_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
try:
sent_id = record['id'].lower().strip()
paraphrase_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2']),
int(float(record['is_duplicate'])),sent_id))
except:
pass
print(f"Loaded {len(paraphrase_data)} {split} examples from {paraphrase_filename}")
similarity_data = []
if split == 'test':
with open(similarity_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent_id = record['id'].lower().strip()
similarity_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2'])
,sent_id))
else:
with open(similarity_filename, 'r') as fp:
for record in csv.DictReader(fp,delimiter = '\t'):
sent_id = record['id'].lower().strip()
similarity_data.append((preprocess_string(record['sentence1']),
preprocess_string(record['sentence2']),
float(record['similarity']),sent_id))
print(f"Loaded {len(similarity_data)} {split} examples from {similarity_filename}")
return sentiment_data, num_labels, paraphrase_data, similarity_data