GlowCheese commited on
Commit
51eaae4
·
1 Parent(s): 21406a0

Training results

Browse files
.gitignore CHANGED
@@ -161,4 +161,6 @@ cython_debug/
161
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
  #.idea/
163
 
164
- zemo*.py
 
 
 
161
  # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
  #.idea/
163
 
164
+ nohup.out
165
+ *.pt
166
+ predictions/
cfimdb-classifier.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e1c66df3c0ce0e4326519041f49707f102df5f680de5ded1b5125ba689a9d141
3
- size 438045778
 
 
 
 
classifier.py CHANGED
@@ -48,6 +48,7 @@ class BertSentimentClassifier(torch.nn.Module):
48
  param.requires_grad = True
49
 
50
  # Create any instance variables you need to classify the sentiment of BERT embeddings.
 
51
  self.classifier = torch.nn.Linear(config.hidden_size, self.num_labels)
52
 
53
 
@@ -67,7 +68,7 @@ class BertSentimentClassifier(torch.nn.Module):
67
  cls_token_output = sequence_output[:, 0, :] # The first token is [CLS]
68
 
69
  # Pass the [CLS] token representation through the classifier.
70
- logits = self.classifier(cls_token_output)
71
 
72
  return logits
73
 
@@ -180,7 +181,7 @@ def model_eval(dataloader, model, device):
180
  y_pred = []
181
  sents = []
182
  sent_ids = []
183
- for step, batch in enumerate(tqdm(dataloader, desc=f'eval', disable=TQDM_DISABLE)):
184
  b_ids, b_mask, b_labels, b_sents, b_sent_ids = batch['token_ids'],batch['attention_mask'], \
185
  batch['labels'], batch['sents'], batch['sent_ids']
186
 
@@ -209,7 +210,7 @@ def model_test_eval(dataloader, model, device):
209
  y_pred = []
210
  sents = []
211
  sent_ids = []
212
- for step, batch in enumerate(tqdm(dataloader, desc=f'eval', disable=TQDM_DISABLE)):
213
  b_ids, b_mask, b_sents, b_sent_ids = batch['token_ids'],batch['attention_mask'], \
214
  batch['sents'], batch['sent_ids']
215
 
@@ -277,7 +278,7 @@ def train(args):
277
  model.train()
278
  train_loss = 0
279
  num_batches = 0
280
- for batch in tqdm(train_dataloader, desc=f'train-{epoch}', disable=TQDM_DISABLE):
281
  b_ids, b_mask, b_labels = (batch['token_ids'],
282
  batch['attention_mask'], batch['labels'])
283
 
 
48
  param.requires_grad = True
49
 
50
  # Create any instance variables you need to classify the sentiment of BERT embeddings.
51
+ self.dropout = torch.nn.Dropout(config.hidden_dropout_prob)
52
  self.classifier = torch.nn.Linear(config.hidden_size, self.num_labels)
53
 
54
 
 
68
  cls_token_output = sequence_output[:, 0, :] # The first token is [CLS]
69
 
70
  # Pass the [CLS] token representation through the classifier.
71
+ logits = self.classifier(self.dropout(cls_token_output))
72
 
73
  return logits
74
 
 
181
  y_pred = []
182
  sents = []
183
  sent_ids = []
184
+ for step, batch in enumerate(tqdm(dataloader, desc=f'eval', leave=False, disable=TQDM_DISABLE)):
185
  b_ids, b_mask, b_labels, b_sents, b_sent_ids = batch['token_ids'],batch['attention_mask'], \
186
  batch['labels'], batch['sents'], batch['sent_ids']
187
 
 
210
  y_pred = []
211
  sents = []
212
  sent_ids = []
213
+ for step, batch in enumerate(tqdm(dataloader, desc=f'eval', leave=False, disable=TQDM_DISABLE)):
214
  b_ids, b_mask, b_sents, b_sent_ids = batch['token_ids'],batch['attention_mask'], \
215
  batch['sents'], batch['sent_ids']
216
 
 
278
  model.train()
279
  train_loss = 0
280
  num_batches = 0
281
+ for batch in tqdm(train_dataloader, desc=f'train-{epoch}', leave=False, disable=TQDM_DISABLE):
282
  b_ids, b_mask, b_labels = (batch['token_ids'],
283
  batch['attention_mask'], batch['labels'])
284
 
predictions/last-linear-layer-cfimdb-dev-out.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c3f994587376345ea6a1e80a7946d5889259f6a427989c71e0b45de28ea4545d
3
- size 7621
 
 
 
 
predictions/last-linear-layer-cfimdb-test-out.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ebedf210c8973e02648e96152e253daa2385b230a48da151812a58d80178536
3
- size 15154
 
 
 
 
predictions/last-linear-layer-sst-dev-out.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:22412dead5299ffb8fae45448f240cb135e3ad5dc04cea96975e893bdd719ba8
3
- size 34157
 
 
 
 
predictions/last-linear-layer-sst-test-out.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3455d6637e5ecd118c31e48534d92298da3c865ed11ad93e2aadc09fcc743666
3
- size 68536
 
 
 
 
sst-classifier.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:62f6282ea608a997c1b43071cedcb1c4ba454b420305c7b15138aa9d7f70103d
3
- size 438072793
 
 
 
 
trainings/last-layer-no-dropout.txt ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Training Sentiment Classifier on SST...
2
+ load 8544 data from data/ids-sst-train.csv
3
+ load 1101 data from data/ids-sst-dev.csv
4
+ Epoch 0: train loss :: 1.429, train acc :: 0.454, dev acc :: 0.441
5
+ Epoch 1: train loss :: 1.297, train acc :: 0.467, dev acc :: 0.431
6
+ Epoch 2: train loss :: 1.253, train acc :: 0.489, dev acc :: 0.450
7
+ Epoch 3: train loss :: 1.233, train acc :: 0.491, dev acc :: 0.455
8
+ Epoch 4: train loss :: 1.214, train acc :: 0.501, dev acc :: 0.450
9
+ Epoch 5: train loss :: 1.211, train acc :: 0.511, dev acc :: 0.465
10
+ Epoch 6: train loss :: 1.199, train acc :: 0.515, dev acc :: 0.478
11
+ Epoch 7: train loss :: 1.192, train acc :: 0.518, dev acc :: 0.481
12
+ Epoch 8: train loss :: 1.191, train acc :: 0.513, dev acc :: 0.467
13
+ Epoch 9: train loss :: 1.191, train acc :: 0.505, dev acc :: 0.448
14
+ Evaluating on SST...
15
+ load model from sst-classifier.pt
16
+ load 1101 data from data/ids-sst-dev.csv
17
+ DONE DEV
18
+ DONE Test
19
+ dev acc :: 0.481
20
+ Training Sentiment Classifier on cfimdb...
21
+ load 1707 data from data/ids-cfimdb-train.csv
22
+ load 245 data from data/ids-cfimdb-dev.csv
23
+ Epoch 0: train loss :: 0.574, train acc :: 0.821, dev acc :: 0.829
24
+ Epoch 1: train loss :: 0.466, train acc :: 0.866, dev acc :: 0.857
25
+ Epoch 2: train loss :: 0.419, train acc :: 0.872, dev acc :: 0.873
26
+ Epoch 3: train loss :: 0.386, train acc :: 0.878, dev acc :: 0.833
27
+ Epoch 4: train loss :: 0.373, train acc :: 0.899, dev acc :: 0.849
28
+ Epoch 5: train loss :: 0.357, train acc :: 0.893, dev acc :: 0.865
29
+ Epoch 6: train loss :: 0.342, train acc :: 0.905, dev acc :: 0.873
30
+ Epoch 7: train loss :: 0.334, train acc :: 0.906, dev acc :: 0.873
31
+ Epoch 8: train loss :: 0.345, train acc :: 0.892, dev acc :: 0.824
32
+ Epoch 9: train loss :: 0.321, train acc :: 0.888, dev acc :: 0.820
33
+ Evaluating on cfimdb...
34
+ load model from cfimdb-classifier.pt
35
+ load 245 data from data/ids-cfimdb-dev.csv
36
+ DONE DEV
37
+ DONE Test
38
+ dev acc :: 0.873
trainings/last-layer-w-dropout.txt ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Training Sentiment Classifier on SST...
2
+ load 8544 data from data/ids-sst-train.csv
3
+ load 1101 data from data/ids-sst-dev.csv
4
+ Epoch 0: train loss :: 1.458, train acc :: 0.460, dev acc :: 0.442
5
+ Epoch 1: train loss :: 1.331, train acc :: 0.472, dev acc :: 0.440
6
+ Epoch 2: train loss :: 1.288, train acc :: 0.476, dev acc :: 0.447
7
+ Epoch 3: train loss :: 1.269, train acc :: 0.490, dev acc :: 0.457
8
+ Epoch 4: train loss :: 1.252, train acc :: 0.485, dev acc :: 0.446
9
+ Epoch 5: train loss :: 1.242, train acc :: 0.487, dev acc :: 0.447
10
+ Epoch 6: train loss :: 1.235, train acc :: 0.511, dev acc :: 0.472
11
+ Epoch 7: train loss :: 1.235, train acc :: 0.512, dev acc :: 0.465
12
+ Epoch 8: train loss :: 1.235, train acc :: 0.512, dev acc :: 0.472
13
+ Epoch 9: train loss :: 1.227, train acc :: 0.509, dev acc :: 0.475
14
+ Evaluating on SST...
15
+ load model from sst-classifier.pt
16
+ load 1101 data from data/ids-sst-dev.csv
17
+ DONE DEV
18
+ DONE Test
19
+ dev acc :: 0.475
20
+ Training Sentiment Classifier on cfimdb...
21
+ load 1707 data from data/ids-cfimdb-train.csv
22
+ load 245 data from data/ids-cfimdb-dev.csv
23
+ Epoch 0: train loss :: 0.590, train acc :: 0.819, dev acc :: 0.849
24
+ Epoch 1: train loss :: 0.510, train acc :: 0.826, dev acc :: 0.845
25
+ Epoch 2: train loss :: 0.459, train acc :: 0.848, dev acc :: 0.853
26
+ Epoch 3: train loss :: 0.438, train acc :: 0.880, dev acc :: 0.857
27
+ Epoch 4: train loss :: 0.413, train acc :: 0.876, dev acc :: 0.869
28
+ Epoch 5: train loss :: 0.406, train acc :: 0.890, dev acc :: 0.833
29
+ Epoch 6: train loss :: 0.401, train acc :: 0.893, dev acc :: 0.845
30
+ Epoch 7: train loss :: 0.403, train acc :: 0.870, dev acc :: 0.861
31
+ Epoch 8: train loss :: 0.393, train acc :: 0.879, dev acc :: 0.865
32
+ Epoch 9: train loss :: 0.407, train acc :: 0.895, dev acc :: 0.873
33
+ Evaluating on cfimdb...
34
+ load model from cfimdb-classifier.pt
35
+ load 245 data from data/ids-cfimdb-dev.csv
36
+ DONE DEV
37
+ DONE Test
38
+ dev acc :: 0.873