File size: 22,603 Bytes
b68d805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.

import math
from threading import Thread
from typing import List, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss
from transformers import PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.utils import logging
from transformers.generation.utils import GenerationConfig

from .configuration_baichuan import BaichuanConfig
from .generation_utils import build_chat_input, TextIterStreamer

logger = logging.get_logger(__name__)


def _get_interleave(n):
    def _get_interleave_power_of_2(n):
        start = (2 ** (-2 ** -(math.log2(n) - 3)))
        ratio = start
        return [start * ratio ** i for i in range(n)]

    if math.log2(n).is_integer():
        return _get_interleave_power_of_2(n)
    else:
        closest_power_of_2 = 2 ** math.floor(math.log2(n))
        return _get_interleave_power_of_2(closest_power_of_2) + \
               _get_interleave(2 * closest_power_of_2)[0::2][:n - closest_power_of_2]

def _fill_with_neg_inf(t):
    """FP16-compatible function that fills a tensor with -inf."""
    return t.float().fill_(float("-inf")).type_as(t)

def _gen_alibi_mask(n_head, max_pos):
    """used in inference only"""
    slopes = torch.Tensor(_get_interleave(n_head))
    alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(max_pos).unsqueeze(0).unsqueeze(0).expand(
        n_head, -1, -1)
    alibi = alibi.view(n_head, 1, max_pos)
    alibi_mask = torch.triu(
        _fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1
    )
    alibi_mask = alibi_mask.unsqueeze(0) + alibi
    return alibi_mask

def _buffered_future_mask(tensor, maxpos, alibi, attn_heads):
    """used in training only"""
    dim = tensor.size(1)
    _future_mask = torch.triu(
        _fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1
    )   
    _future_mask = _future_mask.unsqueeze(0) + alibi
    _future_mask = _future_mask.to(tensor)
    return _future_mask[:tensor.shape[0] * attn_heads, :maxpos, :maxpos]


class RMSNorm(torch.nn.Module):
    def __init__(self, hidden_size, epsilon=1e-6):
        super().__init__()
        self.weight = torch.nn.Parameter(torch.empty(hidden_size))
        self.epsilon = epsilon

    def forward(self, hidden_states):
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon)

        # convert into half-precision
        if self.weight.dtype in [torch.float16, torch.bfloat16]:
            hidden_states = hidden_states.to(self.weight.dtype)

        return self.weight * hidden_states


class MLP(torch.nn.Module):
    def __init__(
            self,
            hidden_size: int,
            intermediate_size: int,
            hidden_act: str,
    ):
        super().__init__()
        self.gate_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = torch.nn.Linear(intermediate_size, hidden_size, bias=False)
        self.up_proj = torch.nn.Linear(hidden_size, intermediate_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


class BaichuanAttention(torch.nn.Module):
    def __init__(self, config: BaichuanConfig):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        self.max_position_embeddings = config.model_max_length

        if (self.head_dim * self.num_heads) != self.hidden_size:
            raise ValueError(
                f"hidden_size {self.hidden_size} is not divisible by num_heads {self.num_heads}"
            )
        self.W_pack = torch.nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
        self.o_proj = torch.nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: bool = False,
            use_cache: bool = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:

        bsz, q_len, _ = hidden_states.size()

        proj = self.W_pack(hidden_states)
        proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
        query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
        value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)

        kv_seq_len = key_states.shape[-2]
        if past_key_value is not None:
            kv_seq_len += past_key_value[0].shape[-2]

        if past_key_value is not None:
            # reuse k, v, self_attention
            key_states = torch.cat([past_key_value[0], key_states], dim=2)
            value_states = torch.cat([past_key_value[1], value_states], dim=2)

        past_key_value = (key_states, value_states) if use_cache else None

        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)

        if attention_mask is not None:
            if q_len == 1: # inference with cache
                if len(attention_mask.size()) == 4:
                    attention_mask = attention_mask[:, :, -1:, :]   
                else:
                    attention_mask = attention_mask[:, -1:, :]    
            attn_weights = attn_weights + attention_mask
            attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))

        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)

        attn_output = torch.matmul(attn_weights, value_states)

        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
        attn_output = self.o_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, attn_weights, past_key_value


class BaichuanLayer(torch.nn.Module):
    def __init__(self, config: BaichuanConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = BaichuanAttention(config=config)
        self.mlp = MLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
        self.input_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)

    def forward(
            self,
            hidden_states: torch.Tensor,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_value: Optional[Tuple[torch.Tensor]] = None,
            output_attentions: Optional[bool] = False,
            use_cache: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs


class BaichuanPreTrainedModel(PreTrainedModel):
    config_class = BaichuanConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["BaichuanLayer"]
    _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, torch.nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, torch.nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, BaichuanModel):
            module.gradient_checkpointing = value


class BaichuanModel(BaichuanPreTrainedModel):
    def __init__(self, config: BaichuanConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size
        self.n_head = config.num_attention_heads
        self.embed_tokens = torch.nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = torch.nn.ModuleList([BaichuanLayer(config) for _ in range(config.num_hidden_layers)])
        self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps)

        self.gradient_checkpointing = config.gradient_checkpointing
        self.post_init()
        self.max_cache_pos = config.model_max_length
        self.first_run = True
        self.alibi_mask = None

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def get_alibi_mask(self, tensor, seq_length_with_past):
        if self.training:
            slopes = torch.Tensor(_get_interleave(self.n_head))
            alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(seq_length_with_past).unsqueeze(0).unsqueeze(0).expand(
                self.n_head,
                -1, -1) 
            alibi = alibi.view(self.n_head, 1, seq_length_with_past)
            mask = _buffered_future_mask(tensor, seq_length_with_past, alibi, self.n_head)
        else:
            if self.first_run:
                self.first_run = False
                self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
            if seq_length_with_past > self.max_cache_pos:
                self.max_cache_pos = seq_length_with_past
                self.register_buffer("future_mask", _gen_alibi_mask(self.n_head, self.max_cache_pos).to(tensor), persistent=False)
            mask = self.future_mask[:self.n_head, :seq_length_with_past, :seq_length_with_past] 
        return mask

    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            use_cache: Optional[bool] = False,
            output_attentions: Optional[bool] = False,
            output_hidden_states: Optional[bool] = False,
            return_dict: Optional[bool] = True,
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot provide both input_ids and inputs_embeds simultaneously")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You need to provide input_ids or inputs_embeds")

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        seq_length_with_past = seq_length

        if past_key_values is not None:
            past_key_values_length = past_key_values[0][0].shape[2]
            seq_length_with_past = seq_length_with_past + past_key_values_length

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if self.training:
            if self.alibi_mask is None or self.alibi_mask.shape[-1] != seq_length_with_past:
                self.alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)
            alibi_mask = self.alibi_mask
        else:
            alibi_mask = self.get_alibi_mask(inputs_embeds, seq_length_with_past)

        if attention_mask is not None:
            if len(attention_mask.shape) == 2:
                expanded_mask = attention_mask.to(alibi_mask.dtype)
                expanded_mask = torch.tril(torch.gt(expanded_mask[:, :, None] * expanded_mask[:, None, :], 0)
                                ) * torch.eq(expanded_mask[:, :, None] - expanded_mask[:, None, :], 0)
            else:
                expanded_mask = attention_mask 
            bsz = inputs_embeds.size(0)
            src_len, tgt_len = alibi_mask.size()[-2:]
            expanded_mask = expanded_mask.unsqueeze(1).expand(bsz, 1, src_len, tgt_len).to(alibi_mask.dtype)
            inverted_mask = 1.0 - expanded_mask
            inverted_mask = inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(alibi_mask.dtype).min)
            attention_mask = inverted_mask + alibi_mask.unsqueeze(0)
        else:
            attention_mask = alibi_mask

        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = () if use_cache else None

        for idx, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            past_key_value = past_key_values[idx] if past_key_values is not None else None

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        # None for past_key_value
                        return module(*inputs, output_attentions, None)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(decoder_layer),
                    hidden_states,
                    attention_mask,
                    None,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    past_key_value=past_key_value,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class BaichuanForCausalLM(BaichuanPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.model = BaichuanModel(config)
        self.lm_head = torch.nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
            self,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            inputs_embeds: Optional[torch.FloatTensor] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = False,
            output_hidden_states: Optional[bool] = False,
            return_dict: Optional[bool] = True,
            **kwargs
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
            self,
            input_ids: torch.LongTensor,
            past_key_values: Optional[torch.Tensor] = None,
            attention_mask: Optional[torch.Tensor] = None,
            inputs_embeds: Optional[torch.Tensor] = None,
            **kwargs
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        return tuple(
            tuple(past_state.index_select(0, beam_idx) for past_state in layer_past)
            for layer_past in past_key_values
        )

    def quantize(self, bits: int):
        try:
            from .quantizer import QLinear
        except ImportError:
            raise ImportError(
                f"Needs QLinear to run quantize."
            )

        for layer in self.model.layers:
            layer.self_attn.W_pack = QLinear(
                bits=bits,
                weight=layer.self_attn.W_pack.weight,
                bias = None,
            )
            layer.self_attn.o_proj = QLinear(
                bits=bits,
                weight=layer.self_attn.o_proj.weight,
                bias = None,
            )
            layer.mlp.gate_proj = QLinear(
                bits=bits,
                weight=layer.mlp.gate_proj.weight,
                bias = None,
            )
            layer.mlp.down_proj = QLinear(
                bits=bits,
                weight=layer.mlp.down_proj.weight,
                bias = None,
            )
            layer.mlp.up_proj = QLinear(
                bits=bits,
                weight=layer.mlp.up_proj.weight,
                bias = None,
            )
        return self

    @torch.no_grad()
    def chat(self, tokenizer, messages: List[dict], stream=False,
             generation_config: Optional[GenerationConfig]=None):
        generation_config = generation_config or self.generation_config
        input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
        if stream:
            streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
            Thread(target=self.generate, kwargs=dict(
                inputs=input_ids, streamer=streamer,
                generation_config=generation_config,
            )).start()
            return streamer
        else:
            outputs = self.generate(input_ids, generation_config=generation_config)
            response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
            return response