rodrigocaus
commited on
Commit
·
c2d6420
1
Parent(s):
c0ca4f6
chore: update readme with trainer informations
Browse files
README.md
CHANGED
@@ -1,3 +1,219 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
base_model: intfloat/multilingual-e5-base
|
4 |
+
datasets:
|
5 |
+
- E-FAQ
|
6 |
+
language:
|
7 |
+
- pt
|
8 |
+
- es
|
9 |
+
library_name: sentence-transformers
|
10 |
+
metrics:
|
11 |
+
- cosine_accuracy@1
|
12 |
+
- cosine_accuracy@10
|
13 |
+
- cosine_precision@1
|
14 |
+
- cosine_precision@10
|
15 |
+
- cosine_recall@1
|
16 |
+
- cosine_recall@10
|
17 |
+
- cosine_ndcg@10
|
18 |
+
- cosine_mrr@10
|
19 |
+
- cosine_map@1
|
20 |
+
- cosine_map@10
|
21 |
+
- dot_accuracy@1
|
22 |
+
- dot_accuracy@10
|
23 |
+
- dot_precision@1
|
24 |
+
- dot_precision@10
|
25 |
+
- dot_recall@1
|
26 |
+
- dot_recall@10
|
27 |
+
- dot_ndcg@10
|
28 |
+
- dot_mrr@10
|
29 |
+
- dot_map@1
|
30 |
+
- dot_map@10
|
31 |
+
- euclidean_accuracy@1
|
32 |
+
- euclidean_accuracy@10
|
33 |
+
- euclidean_precision@1
|
34 |
+
- euclidean_precision@10
|
35 |
+
- euclidean_recall@1
|
36 |
+
- euclidean_recall@10
|
37 |
+
- euclidean_ndcg@10
|
38 |
+
- euclidean_mrr@10
|
39 |
+
- euclidean_map@1
|
40 |
+
- euclidean_map@10
|
41 |
+
pipeline_tag: sentence-similarity
|
42 |
+
tags:
|
43 |
+
- sentence-transformers
|
44 |
+
- sentence-similarity
|
45 |
+
- feature-extraction
|
46 |
+
- generated_from_trainer
|
47 |
+
- dataset_size:119448
|
48 |
+
- loss:CompositionLoss
|
49 |
+
widget:
|
50 |
+
- source_sentence: Tem mandril com outras medidas
|
51 |
+
sentences:
|
52 |
+
- Bom dia vem tudo no kit conforme a foto?maquina de solda ,esquadro,máscara, 2
|
53 |
+
rolos de arame é isso?
|
54 |
+
- Você tem da magneti Marelli código 40421702 PARATI BOLA G2 96 MONOPONTO AP 1.6
|
55 |
+
GASOLINA
|
56 |
+
- 'Hola buenas. Es compatible para NEW Mitsubishi Montero cr 4x4 3.2 N. Chasis:
|
57 |
+
JMBMNV88W8J000791'
|
58 |
+
- source_sentence: Hola tienes disponible de mono talla 12 a 18 meses?
|
59 |
+
sentences:
|
60 |
+
- Hola buen dia! Necesito una malla sombra como la de esta publicación pero de 4
|
61 |
+
x 3.40 mts, en cuanto sale?
|
62 |
+
- Serve na Duster automática 2.0
|
63 |
+
- Lo que pasa es que no me deja agregar más de 1
|
64 |
+
- source_sentence: Viene con kit de instalacion y tornillería?
|
65 |
+
sentences:
|
66 |
+
- Bom dia. Tem como fixar no chão. Na grama?
|
67 |
+
- La base para conectar ese foco la tendrá???
|
68 |
+
- Pod ser usado para instalação de farol d milha ?
|
69 |
+
- source_sentence: corsa 2004 1.8 con ultimos 8 digitos NIV 4C210262
|
70 |
+
sentences:
|
71 |
+
- Le queda a un Derby 2007 1.8?
|
72 |
+
- Serve no Corsa clacic 97 sedã
|
73 |
+
- Boa tarde vc so tem.um ?
|
74 |
+
- source_sentence: Buenos días, es compatible con las apps bancarias?
|
75 |
+
sentences:
|
76 |
+
- Hola....el bulon de q diámetro es?
|
77 |
+
- Se le puede quitar el microfono?
|
78 |
+
- Serve para cachorrinha que está no cio?
|
79 |
+
model-index:
|
80 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-base
|
81 |
+
results:
|
82 |
+
- task:
|
83 |
+
type: information-retrieval
|
84 |
+
name: Information Retrieval
|
85 |
+
dataset:
|
86 |
+
name: E-FAQ
|
87 |
+
type: text-retrieval
|
88 |
+
metrics:
|
89 |
+
- type: cosine_accuracy@1
|
90 |
+
value: 0.7941531042796866
|
91 |
+
name: Cosine Accuracy@1
|
92 |
+
- type: cosine_accuracy@10
|
93 |
+
value: 0.9483875828812538
|
94 |
+
name: Cosine Accuracy@10
|
95 |
+
- type: cosine_precision@1
|
96 |
+
value: 0.7941531042796866
|
97 |
+
name: Cosine Precision@1
|
98 |
+
- type: cosine_precision@10
|
99 |
+
value: 0.17701928872814954
|
100 |
+
name: Cosine Precision@10
|
101 |
+
- type: cosine_recall@1
|
102 |
+
value: 0.5563725301557428
|
103 |
+
name: Cosine Recall@1
|
104 |
+
- type: cosine_recall@10
|
105 |
+
value: 0.9093050609545924
|
106 |
+
name: Cosine Recall@10
|
107 |
+
- type: cosine_ndcg@10
|
108 |
+
value: 0.8420320427198602
|
109 |
+
name: Cosine Ndcg@10
|
110 |
+
- type: cosine_mrr@10
|
111 |
+
value: 0.8476323229713864
|
112 |
+
name: Cosine Mrr@10
|
113 |
+
- type: cosine_map@1
|
114 |
+
value: 0.7941531042796866
|
115 |
+
name: Cosine Map@1
|
116 |
+
- type: cosine_map@10
|
117 |
+
value: 0.8004156235676744
|
118 |
+
name: Cosine Map@10
|
119 |
+
- type: dot_accuracy@1
|
120 |
+
value: 0.7941531042796866
|
121 |
+
name: Dot Accuracy@1
|
122 |
+
- type: dot_accuracy@10
|
123 |
+
value: 0.9483875828812538
|
124 |
+
name: Dot Accuracy@10
|
125 |
+
- type: dot_precision@1
|
126 |
+
value: 0.7941531042796866
|
127 |
+
name: Dot Precision@1
|
128 |
+
- type: dot_precision@10
|
129 |
+
value: 0.17701928872814954
|
130 |
+
name: Dot Precision@10
|
131 |
+
- type: dot_recall@1
|
132 |
+
value: 0.5563725301557428
|
133 |
+
name: Dot Recall@1
|
134 |
+
- type: dot_recall@10
|
135 |
+
value: 0.9093050609545924
|
136 |
+
name: Dot Recall@10
|
137 |
+
- type: dot_ndcg@10
|
138 |
+
value: 0.8420320427198602
|
139 |
+
name: Dot Ndcg@10
|
140 |
+
- type: dot_mrr@10
|
141 |
+
value: 0.8476323229713864
|
142 |
+
name: Dot Mrr@10
|
143 |
+
- type: dot_map@1
|
144 |
+
value: 0.7941531042796866
|
145 |
+
name: Dot Map@1
|
146 |
+
- type: dot_map@10
|
147 |
+
value: 0.8004156235676744
|
148 |
+
name: Dot Map@10
|
149 |
+
- type: euclidean_accuracy@1
|
150 |
+
value: 0.7941531042796866
|
151 |
+
name: Euclidean Accuracy@1
|
152 |
+
- type: euclidean_accuracy@10
|
153 |
+
value: 0.9483875828812538
|
154 |
+
name: Euclidean Accuracy@10
|
155 |
+
- type: euclidean_precision@1
|
156 |
+
value: 0.7941531042796866
|
157 |
+
name: Euclidean Precision@1
|
158 |
+
- type: euclidean_precision@10
|
159 |
+
value: 0.17701928872814954
|
160 |
+
name: Euclidean Precision@10
|
161 |
+
- type: euclidean_recall@1
|
162 |
+
value: 0.5563725301557428
|
163 |
+
name: Euclidean Recall@1
|
164 |
+
- type: euclidean_recall@10
|
165 |
+
value: 0.9093050609545924
|
166 |
+
name: Euclidean Recall@10
|
167 |
+
- type: euclidean_ndcg@10
|
168 |
+
value: 0.8420320427198602
|
169 |
+
name: Euclidean Ndcg@10
|
170 |
+
- type: euclidean_mrr@10
|
171 |
+
value: 0.8476323229713864
|
172 |
+
name: Euclidean Mrr@10
|
173 |
+
- type: euclidean_map@1
|
174 |
+
value: 0.7941531042796866
|
175 |
+
name: Euclidean Map@1
|
176 |
+
- type: euclidean_map@10
|
177 |
+
value: 0.8004156235676744
|
178 |
+
name: Euclidean Map@10
|
179 |
---
|
180 |
+
|
181 |
+
# Multilingual E5 Base Self-Distilled on E-FAQ
|
182 |
+
|
183 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
184 |
+
|
185 |
+
### Full Model Architecture
|
186 |
+
|
187 |
+
```
|
188 |
+
SentenceTransformer(
|
189 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
190 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
191 |
+
(2): Normalize()
|
192 |
+
)
|
193 |
+
```
|
194 |
+
|
195 |
+
### Framework Versions
|
196 |
+
- Python: 3.12.4
|
197 |
+
- Sentence Transformers: 3.0.1
|
198 |
+
- Transformers: 4.42.4
|
199 |
+
- PyTorch: 2.3.1+cu121
|
200 |
+
- Accelerate: 0.32.1
|
201 |
+
- Datasets: 2.20.0
|
202 |
+
- Tokenizers: 0.19.1
|
203 |
+
|
204 |
+
## Citation
|
205 |
+
|
206 |
+
### BibTeX
|
207 |
+
|
208 |
+
#### Sentence Transformers
|
209 |
+
```bibtex
|
210 |
+
@inproceedings{reimers-2019-sentence-bert,
|
211 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
212 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
213 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
214 |
+
month = "11",
|
215 |
+
year = "2019",
|
216 |
+
publisher = "Association for Computational Linguistics",
|
217 |
+
url = "https://arxiv.org/abs/1908.10084",
|
218 |
+
}
|
219 |
+
```
|