File size: 14,356 Bytes
9df4d20 3aabcb5 9df4d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
language:
- en
- id
- jv
- su
license: llama3
base_model:
- aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
---
# Llama3 8B CPT Sahabat-AI v1
**Sahabat-AI** (Indonesian language for “close friends”) is a collection of Large Language Models (LLMs) which has been pretrained and instruct-tuned for Indonesian language and its various dialects.
Sahabat-AI ecosystem is co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
This is the card for the Llama3 8B CPT Sahabat-AI v1 base model which has undergone continued pre-training from the [AI Singapore-Llama-3-8B-Sea-Lion v2.1-Instruct](https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct) model.
## Model Details
### Model Description
The continued pre-training data for Llama3 8B CPT Sahabat-AI v1 base model encompasses approximately 50B tokens.
- **Co-initiated by:** PT GoTo Gojek Tokopedia Tbk, Indosat Ooredoo Hutchison
- **Developed by:** PT GoTo Gojek Tokopedia Tbk, AI Singapore
- **Model type:** Decoder
- **Languages:** English, Indonesian, Javanese, Sundanese
- **License:** [Llama3 Community License](https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE)
For tokenisation, the model employs the default tokenizer used in Llama-3-8B. The model has a context length of 8192.
### Benchmark Performance
We evaluated Llama 8B CPT Sahabat-AI v1 base model on general language capabilities.
#### General Language Capabilities
For the evaluation of general language capabilities, we employed the
- [SEA HELM (also known as BHASA) evaluation benchmark](https://arxiv.org/abs/2309.06085v2) across a variety of tasks.
- These tasks include Question Answering (QA), Sentiment Analysis (Sentiment), Toxicity Detection (Toxicity), Translation in both directions (Eng>Lang & Lang>Eng), Abstractive Summarization (Summ), Causal Reasoning (Causal) and Natural Language Inference (NLI).
- We also added support for Javanese and Sundanese for the BHASA tasks whenever applicable
- and the common English tasks from the [HuggingFace LLM Leaderboard](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard).
- These tasks consist of [IFEval, BBH, Math Lvl 5, GPQA, MuSR, and MMLU-PRO.](https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about)
- **Caveat**: Our results differ from the HuggingFace LLM Leaderboard because we have used [VLLM](https://docs.vllm.ai/en/latest/) as our inference platform. VLLM caps the context size at **4096 tokens** while HuggingFace was set to **8192 tokens**.
Note: SEA HELM is implemented using prompts to elicit answers in a strict format. For all tasks, the model is expected to provide an answer tag from which the answer is automatically extracted. For tasks where options are provided, the answer should comprise one of the pre-defined options. The scores for each task is normalised to account for baseline performance due to random chance.
The evaluation was done **five-shot** with native prompts on a sample of 100-1000 instances for each dataset.
#### Results
#### SEA HELM (also known as BHASA)
<table style="border-collapse: collapse; width: 100%; font-size: 10px">
<tr>
<th style="border: 2px solid black; padding: 8px; font-weight: bold;">Language / Model Name [Base]</th>
<th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
<th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
<th style="border: 1px solid gray; padding: 8px;">Llama-3-8B</th>
<th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
<th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
<th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
<th style="border: 1px solid gray; padding: 8px;">sea-lionv3-9B</th>
<th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
<th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
</tr>
<tr>
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Overall (Bahasa Indonesia + Javanese + Sundanese)</td>
<td style="border: 1px solid gray; padding: 8px;">42.776</td>
<td style="border: 1px solid gray; padding: 8px;">46.245</td>
<td style="border: 1px solid gray; padding: 8px;">49.160</td>
<td style="border: 1px solid gray; padding: 8px;">49.577</td>
<td style="border: 1px solid gray; padding: 8px;">48.602</td>
<td style="border: 1px solid gray; padding: 8px;">58.972</td>
<td style="border: 1px solid gray; padding: 8px;">60.913</td>
<td style="border: 2px solid black; padding: 8px;">59.437</td>
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">64.123</td>
</tr>
<tr>
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Bahasa Indonesia</td>
<td style="border: 1px solid gray; padding: 8px;">49.341</td>
<td style="border: 1px solid gray; padding: 8px;">55.913</td>
<td style="border: 1px solid gray; padding: 8px;">47.865</td>
<td style="border: 1px solid gray; padding: 8px;">48.110</td>
<td style="border: 1px solid gray; padding: 8px;">49.154</td>
<td style="border: 1px solid gray; padding: 8px;">58.572</td>
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">62.437</td>
<td style="border: 2px solid black; padding: 8px;">53.454</td>
<td style="border: 1px solid gray; padding: 8px;">60.040</td>
</tr>
<tr>
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Javanese</td>
<td style="border: 1px solid gray; padding: 8px;">42.774</td>
<td style="border: 1px solid gray; padding: 8px;">45.917</td>
<td style="border: 1px solid gray; padding: 8px;">54.627</td>
<td style="border: 1px solid gray; padding: 8px;">55.215</td>
<td style="border: 1px solid gray; padding: 8px;">52.728</td>
<td style="border: 1px solid gray; padding: 8px;">63.760</td>
<td style="border: 1px solid gray; padding: 8px;">63.363</td>
<td style="border: 2px solid black; padding: 8px;">65.048</td>
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">69.882</td>
</tr>
<tr>
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Sundanese</td>
<td style="border: 1px solid gray; padding: 8px;">36.213</td>
<td style="border: 1px solid gray; padding: 8px;">36.905</td>
<td style="border: 1px solid gray; padding: 8px;">44.988</td>
<td style="border: 1px solid gray; padding: 8px;">45.407</td>
<td style="border: 1px solid gray; padding: 8px;">43.925</td>
<td style="border: 1px solid gray; padding: 8px;">54.583</td>
<td style="border: 1px solid gray; padding: 8px;">56.939</td>
<td style="border: 2px solid black; padding: 8px;">59.809</td>
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">62.446</td>
</tr>
</table>
#### English Results
<table style="border-collapse: collapse; width: 100%; font-size: 10px">
<tr>
<th style="border: 2px solid black; padding: 8px; font-weight: bold;">Model Name [BASE]</th>
<th style="border: 1px solid gray; padding: 8px;">Qwen2-7B</th>
<th style="border: 1px solid gray; padding: 8px;">Qwen2.5-7B</th>
<th style="border: 1px solid gray; padding: 8px;">Llama-3-8B</th>
<th style="border: 1px solid gray; padding: 8px;">Llama-3.1-8B</th>
<th style="border: 1px solid gray; padding: 8px;">sea-lionv2.1-8B</th>
<th style="border: 1px solid gray; padding: 8px;">gemma-2-9B</th>
<th style="border: 1px solid gray; padding: 8px;">sea-lionv3-9B</th>
<th style="border: 2px solid black; padding: 8px;">sahabatai-v1-8B</th>
<th style="border: 1px solid gray; padding: 8px;">sahabatai-v1-9B</th>
</tr>
<tr>
<td style="border: 2px solid black; padding: 8px; font-weight: bold;">Average</td>
<td style="border: 1px solid gray; padding: 8px;">23.68</td>
<td style="border: 1px solid gray; padding: 8px; background-color: lightgreen;">24.65</td>
<td style="border: 1px solid gray; padding: 8px;">13.56</td>
<td style="border: 1px solid gray; padding: 8px;">13.69</td>
<td style="border: 1px solid gray; padding: 8px;">12.77</td>
<td style="border: 1px solid gray; padding: 8px;">13.34</td>
<td style="border: 1px solid gray; padding: 8px;">21.99</td>
<td style="border: 2px solid black; padding: 8px;">13.92</td>
<td style="border: 1px solid gray; padding: 8px;">19.62</td>
</tr>
</table>
## Training Details
### Data
Llama3 8B CPT Sahabat-AI v1 base model was continued pre-trained on 50B tokens of the following data:
| Data Source | Unique Tokens (B) | Multiplier | Total Tokens (B) | Percentage (%)|
|---------------------------------------|:-----------------:|:----------:|:----------------:|:-------------:|
| Dolma Refined Web | 9.5 | 1 | 9.5 | 19.20 |
| Dolma arXiv | 0.6 | 1 | 0.6 | 1.20 |
| Dolma Star Coder | 5.5 | 1 | 5.5 | 11.0 |
| Dolma Semantic Scholar | 1.2 | 1 | 1.2 | 2.40 |
| Dolma Reddit | 1.7 | 1 | 1.7 | 3.40 |
| Dolma C4 | 1.4 | 1 | 1.4 | 2.80 |
| Wiki* + News* - Indonesian | 1.0 | 1 | 1.0 | 2.00 |
| SEA-LION Pile - Indonesian | 27.5 | 1 | 27.5 | 55.0 |
| JV Pile - Javanese | 0.40 | 3.8 | 1.5 | 3.00 |
| SU Pile - Sundanese | 0.20 | 3.8 | 0.75 | 1.50 |
Note:
- All token counts are counted using Llama3 tokenizer
- Wiki* sources includes Wikipedia, Wiki Books, Wiki Source, Wiki Voyage and Fandom Wiki
- News* sources includes VOA, Global Voices
### Infrastructure
Llama 8B CPT Sahabat-AI v1 was trained using [MosaicML Composer](https://github.com/mosaicml/composer)
on the following hardware:
| Training Details | Llama3 8B CPT Sahabat-AI v1|
|----------------------|:----------------------------:|
| Nvidia H100 80GB GPU | 32 |
| Training Duration | 5 days |
### Configuration
| HyperParameter | Llama3 8B CPT Sahabat-AI v1|
|-------------------|:----------------------------:|
| Precision | bfloat16 |
| Optimizer | decoupled_adamw |
| Scheduler | weight_stable_decay |
| Learning Rate | 1.0e-5 |
| Global Batch Size | 256 |
| Micro Batch Size | 1 |
## Call for Collaboration
Sahabat-AI (Indonesian language for “close friends”) a **local open source Large Language Model (LLM) ecosystem in Indonesian language**, co-initiated by Indonesian tech and telecommunication companies: GoTo Group and Indosat Ooredoo Hutchison.
Sahabat-AI ecosystem aims to empower Indonesians who want to develop AI-based services and applications using Bahasa Indonesia and its various local dialects.
We are supported by research centers and global tech experts such as AI Singapore and Tech Mahendra to train the model to gain general language understanding.
We also collaborate with key top Indonesia universities such as University of Indonesia, Gadjah Mada University, Bogor Institute of Agriculture, Bandung Institute of Technology, including top Indonesia media groups, such as Kompas Gramedia Group and Republika to train and enrich the model in Bahasa Indonesia, ensuring optimum provision of local context and cultural relevance.
We would like to invite **researchers, developers, and language enthusiasts** to actively contribute to the enhancement and expansion of Sahabat-AI.
Your collaborations can involve:
- Identifying and reporting technical issues
- Sharing pre-training, instruction, and preference data
- Improving documentation usability
- Proposing and implementing new model evaluation tasks and metrics
Join us in shaping the future of Sahabat-AI by sharing your expertise and insights to make these models more accessible, accurate, and versatile.
You can contribute your ideas through [this form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
## The Development Team (in ascending alphabetical order)
### AI Singapore
Chan Adwin<br>
Cheng Nicholas<br>
Choa Esther<br>
Huang Yuli<br>
Lau Wayne<br>
Lee Chwan Ren<br>
Leong Wai Yi<br>
Leong Wei Qi<br>
Limkonchotiwat Peerat<br>
Liu Bing Jie Darius<br>
Montalan Jann Railey<br>
Ng Boon Cheong Raymond<br>
Ngui Jian Gang<br>
Nguyen Thanh Ngan<br>
Ong Brandon<br>
Ong Tat-Wee David<br>
Ong Zhi Hao<br>
Rengarajan Hamsawardhini<br>
Siow Bryan<br>
Susanto Yosephine<br>
Tai Ngee Chia<br>
Tan Choon Meng<br>
Teng Walter<br>
Teo Eng Sipp Leslie<br>
Teo Wei Yi<br>
Tjhi William<br>
Yeo Yeow Tong<br>
Yong Xianbin<br>
### PT GoTo Gojek Tokopedia Tbk
Annisa Dininta<br>
Chau Shiau Ching<br>
Choiri Hendra Hadhil<br>
Goel Priyank<br>
Saini Ajay Kumar<br>
Shalev Ofir<br>
Tan Daryl<br>
Tep Kilian Rithi<br>
Tiwari Anupam<br>
Widjojo Daniel<br>
## Acknowledgements
AI Singapore is a national programme supported by the National Research Foundation, Singapore and hosted by the National University of Singapore.
Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore.
## Contact
For more info, please contact us using this [Sahabat-AI Inquiry Form.](https://docs.google.com/forms/d/1_us969eQtEooYOn4XkvGkdP5VHOyCbO6L_sd9kTMnaA/edit)
## Disclaimer
This is the repository for the base model.
The model has _not_ been aligned for safety.
Developers and users should perform their own safety fine-tuning and related security measures.
In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights and codes. |