|
import gradio as gr
|
|
import os
|
|
|
|
from langchain_community.document_loaders import PyPDFLoader
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
from langchain_community.vectorstores import Chroma
|
|
from langchain.chains import ConversationalRetrievalChain
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
from langchain_community.llms import HuggingFacePipeline
|
|
from langchain.chains import ConversationChain
|
|
from langchain.memory import ConversationBufferMemory
|
|
from langchain_community.llms import HuggingFaceEndpoint
|
|
|
|
from pathlib import Path
|
|
import chromadb
|
|
from unidecode import unidecode
|
|
|
|
from transformers import AutoTokenizer
|
|
import transformers
|
|
import torch
|
|
import tqdm
|
|
import accelerate
|
|
import re
|
|
|
|
|
|
|
|
|
|
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
|
"google/gemma-7b-it","google/gemma-2b-it", \
|
|
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
|
|
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
|
|
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
|
|
"google/flan-t5-xxl"
|
|
]
|
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
|
|
|
|
|
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
|
|
|
|
loaders = [PyPDFLoader(x) for x in list_file_path]
|
|
pages = []
|
|
for loader in loaders:
|
|
pages.extend(loader.load())
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(
|
|
chunk_size = chunk_size,
|
|
chunk_overlap = chunk_overlap)
|
|
doc_splits = text_splitter.split_documents(pages)
|
|
return doc_splits
|
|
|
|
|
|
|
|
def create_db(splits, collection_name):
|
|
embedding = HuggingFaceEmbeddings()
|
|
new_client = chromadb.EphemeralClient()
|
|
vectordb = Chroma.from_documents(
|
|
documents=splits,
|
|
embedding=embedding,
|
|
client=new_client,
|
|
collection_name=collection_name,
|
|
|
|
)
|
|
return vectordb
|
|
|
|
|
|
|
|
def load_db():
|
|
embedding = HuggingFaceEmbeddings()
|
|
vectordb = Chroma(
|
|
|
|
embedding_function=embedding)
|
|
return vectordb
|
|
|
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
progress(0.1, desc="Initializing HF tokenizer...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
progress(0.5, desc="Initializing HF Hub...")
|
|
|
|
|
|
|
|
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
|
llm = HuggingFaceEndpoint(
|
|
repo_id=llm_model,
|
|
|
|
temperature = temperature,
|
|
max_new_tokens = max_tokens,
|
|
top_k = top_k,
|
|
load_in_8bit = True,
|
|
)
|
|
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
|
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
|
llm = HuggingFaceEndpoint(
|
|
repo_id=llm_model,
|
|
temperature = temperature,
|
|
max_new_tokens = max_tokens,
|
|
top_k = top_k,
|
|
)
|
|
elif llm_model == "microsoft/phi-2":
|
|
|
|
llm = HuggingFaceEndpoint(
|
|
repo_id=llm_model,
|
|
|
|
temperature = temperature,
|
|
max_new_tokens = max_tokens,
|
|
top_k = top_k,
|
|
trust_remote_code = True,
|
|
torch_dtype = "auto",
|
|
)
|
|
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
|
llm = HuggingFaceEndpoint(
|
|
repo_id=llm_model,
|
|
|
|
temperature = temperature,
|
|
max_new_tokens = 250,
|
|
top_k = top_k,
|
|
)
|
|
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
|
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
|
llm = HuggingFaceEndpoint(
|
|
repo_id=llm_model,
|
|
|
|
temperature = temperature,
|
|
max_new_tokens = max_tokens,
|
|
top_k = top_k,
|
|
)
|
|
else:
|
|
llm = HuggingFaceEndpoint(
|
|
repo_id=llm_model,
|
|
|
|
|
|
temperature = temperature,
|
|
max_new_tokens = max_tokens,
|
|
top_k = top_k,
|
|
)
|
|
|
|
progress(0.75, desc="Defining buffer memory...")
|
|
memory = ConversationBufferMemory(
|
|
memory_key="chat_history",
|
|
output_key='answer',
|
|
return_messages=True
|
|
)
|
|
|
|
retriever=vector_db.as_retriever()
|
|
progress(0.8, desc="Defining retrieval chain...")
|
|
qa_chain = ConversationalRetrievalChain.from_llm(
|
|
llm,
|
|
retriever=retriever,
|
|
chain_type="stuff",
|
|
memory=memory,
|
|
|
|
return_source_documents=True,
|
|
|
|
verbose=False,
|
|
)
|
|
progress(0.9, desc="Done!")
|
|
return qa_chain
|
|
|
|
|
|
|
|
|
|
def create_collection_name(filepath):
|
|
|
|
collection_name = Path(filepath).stem
|
|
|
|
|
|
collection_name = collection_name.replace(" ","-")
|
|
|
|
collection_name = unidecode(collection_name)
|
|
|
|
|
|
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
|
|
|
collection_name = collection_name[:50]
|
|
|
|
if len(collection_name) < 3:
|
|
collection_name = collection_name + 'xyz'
|
|
|
|
if not collection_name[0].isalnum():
|
|
collection_name = 'A' + collection_name[1:]
|
|
if not collection_name[-1].isalnum():
|
|
collection_name = collection_name[:-1] + 'Z'
|
|
print('Filepath: ', filepath)
|
|
print('Collection name: ', collection_name)
|
|
return collection_name
|
|
|
|
|
|
|
|
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
|
|
|
list_file_path = [x.name for x in list_file_obj if x is not None]
|
|
|
|
progress(0.1, desc="Creating collection name...")
|
|
collection_name = create_collection_name(list_file_path[0])
|
|
progress(0.25, desc="Loading document...")
|
|
|
|
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
|
|
|
progress(0.5, desc="Generating vector database...")
|
|
|
|
vector_db = create_db(doc_splits, collection_name)
|
|
progress(0.9, desc="Done!")
|
|
return vector_db, collection_name, "Complete!"
|
|
|
|
|
|
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
llm_name = list_llm[llm_option]
|
|
print("llm_name: ",llm_name)
|
|
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
|
return qa_chain, "Complete!"
|
|
|
|
|
|
def format_chat_history(message, chat_history):
|
|
formatted_chat_history = []
|
|
for user_message, bot_message in chat_history:
|
|
formatted_chat_history.append(f"User: {user_message}")
|
|
formatted_chat_history.append(f"Assistant: {bot_message}")
|
|
return formatted_chat_history
|
|
|
|
|
|
def conversation(qa_chain, message, history):
|
|
formatted_chat_history = format_chat_history(message, history)
|
|
|
|
|
|
|
|
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
|
response_answer = response["answer"]
|
|
if response_answer.find("Helpful Answer:") != -1:
|
|
response_answer = response_answer.split("Helpful Answer:")[-1]
|
|
response_sources = response["source_documents"]
|
|
response_source1 = response_sources[0].page_content.strip()
|
|
response_source2 = response_sources[1].page_content.strip()
|
|
response_source3 = response_sources[2].page_content.strip()
|
|
|
|
response_source1_page = response_sources[0].metadata["page"] + 1
|
|
response_source2_page = response_sources[1].metadata["page"] + 1
|
|
response_source3_page = response_sources[2].metadata["page"] + 1
|
|
|
|
|
|
|
|
|
|
new_history = history + [(message, response_answer)]
|
|
|
|
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
|
|
|
|
|
def upload_file(file_obj):
|
|
list_file_path = []
|
|
for idx, file in enumerate(file_obj):
|
|
file_path = file_obj.name
|
|
list_file_path.append(file_path)
|
|
|
|
|
|
return list_file_path
|
|
|
|
|
|
def demo():
|
|
with gr.Blocks(theme="base") as demo:
|
|
vector_db = gr.State()
|
|
qa_chain = gr.State()
|
|
collection_name = gr.State()
|
|
|
|
gr.Markdown(
|
|
"""<center><h2>PDF-based chatbot</center></h2>
|
|
<h3>Ask any questions about your PDF documents</h3>""")
|
|
gr.Markdown(
|
|
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
|
|
The user interface explicitely shows multiple steps to help understand the RAG workflow.
|
|
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
|
|
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
|
""")
|
|
|
|
with gr.Tab("Step 1 - Upload PDF"):
|
|
with gr.Row():
|
|
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
|
|
|
|
|
with gr.Tab("Step 2 - Process document"):
|
|
with gr.Row():
|
|
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
|
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
|
with gr.Row():
|
|
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
|
with gr.Row():
|
|
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
|
with gr.Row():
|
|
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
|
with gr.Row():
|
|
db_btn = gr.Button("Generate vector database")
|
|
|
|
with gr.Tab("Step 3 - Initialize QA chain"):
|
|
with gr.Row():
|
|
llm_btn = gr.Radio(list_llm_simple, \
|
|
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
|
with gr.Accordion("Advanced options - LLM model", open=False):
|
|
with gr.Row():
|
|
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
|
with gr.Row():
|
|
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
|
with gr.Row():
|
|
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
|
with gr.Row():
|
|
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
|
with gr.Row():
|
|
qachain_btn = gr.Button("Initialize Question Answering chain")
|
|
|
|
with gr.Tab("Step 4 - Chatbot"):
|
|
chatbot = gr.Chatbot(height=300)
|
|
with gr.Accordion("Advanced - Document references", open=False):
|
|
with gr.Row():
|
|
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
|
source1_page = gr.Number(label="Page", scale=1)
|
|
with gr.Row():
|
|
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
|
source2_page = gr.Number(label="Page", scale=1)
|
|
with gr.Row():
|
|
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
|
source3_page = gr.Number(label="Page", scale=1)
|
|
with gr.Row():
|
|
msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
|
|
with gr.Row():
|
|
submit_btn = gr.Button("Submit message")
|
|
clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")
|
|
|
|
|
|
|
|
db_btn.click(initialize_database, \
|
|
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
|
outputs=[vector_db, collection_name, db_progress])
|
|
qachain_btn.click(initialize_LLM, \
|
|
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
|
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
|
inputs=None, \
|
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
|
queue=False)
|
|
|
|
|
|
msg.submit(conversation, \
|
|
inputs=[qa_chain, msg, chatbot], \
|
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
|
queue=False)
|
|
submit_btn.click(conversation, \
|
|
inputs=[qa_chain, msg, chatbot], \
|
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
|
queue=False)
|
|
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
|
inputs=None, \
|
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
|
queue=False)
|
|
demo.queue().launch(debug=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo()
|
|
|