GoodBaiBai88 commited on
Commit
531f2d8
1 Parent(s): 6e3c573

Upload LamedPhi3ForCausalLM

Browse files
config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/baifan/PycharmProjects/M3D_hf/M3D_LaMed_phi3/weight/Phi-3-mini-4k-instruct",
3
+ "architectures": [
4
+ "LamedPhi3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_m3d_lamed.LamedPhi3Config",
10
+ "AutoModelForCausalLM": "modeling_m3d_lamed.LamedPhi3ForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "embd_pdrop": 0.0,
14
+ "eos_token_id": 32000,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 3072,
17
+ "image_channel": 1,
18
+ "image_size": [
19
+ 32,
20
+ 256,
21
+ 256
22
+ ],
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 8192,
25
+ "max_position_embeddings": 4096,
26
+ "mm_hidden_size": 768,
27
+ "mm_projector_type": "spp",
28
+ "model_type": "lamed_phi3",
29
+ "num_attention_heads": 32,
30
+ "num_hidden_layers": 32,
31
+ "num_key_value_heads": 32,
32
+ "original_max_position_embeddings": 4096,
33
+ "pad_token_id": 32000,
34
+ "patch_size": [
35
+ 4,
36
+ 16,
37
+ 16
38
+ ],
39
+ "proj_layer_num": 2,
40
+ "proj_layer_type": "mlp",
41
+ "proj_pooling_size": 2,
42
+ "proj_pooling_type": "spatial",
43
+ "resid_pdrop": 0.0,
44
+ "rms_norm_eps": 1e-05,
45
+ "rope_scaling": null,
46
+ "rope_theta": 10000.0,
47
+ "seg_token_id": 32014,
48
+ "segmentation_module": "segvol",
49
+ "sliding_window": 2047,
50
+ "tie_word_embeddings": false,
51
+ "torch_dtype": "float32",
52
+ "transformers_version": "4.42.0.dev0",
53
+ "use_cache": true,
54
+ "vision_select_feature": "patch",
55
+ "vision_select_layer": -1,
56
+ "vision_tower": "vit3d",
57
+ "vocab_size": 32015
58
+ }
configuration_m3d_lamed.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from transformers import Phi3Config
2
+
3
+
4
+ class LamedPhi3Config(Phi3Config):
5
+ model_type = "lamed_phi3"
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 32000,
6
+ 32001,
7
+ 32007
8
+ ],
9
+ "pad_token_id": 32000,
10
+ "transformers_version": "4.42.0.dev0"
11
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74c09988d2b410d5d60964af3270f8c40aacecd1c42569efd94ffdad64c389a3
3
+ size 4961250304
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deeaf7b4b4078e3d9a2a4ecba44f2307252889cf274b987f6377e4ad64bc77f8
3
+ size 4983111176
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ac2f42cdb98a113c2c4c40d3878fa11b571349a57d68044bf778f18f0e5f8de
3
+ size 4992612024
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e02aadccf325e90daa9cf02700b9623457fbb5bfa1e79e2c46a45e010c6384ba
3
+ size 1259512848
model.safetensors.index.json ADDED
@@ -0,0 +1,624 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16196407616
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.1.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
21
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
22
+ "model.layers.10.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
23
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
24
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.10.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
26
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.11.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.11.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.12.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.12.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.13.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.13.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.14.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.14.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.15.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.15.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.16.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.16.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.17.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.17.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.18.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.18.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.19.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.19.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
81
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
82
+ "model.layers.2.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
83
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
84
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
85
+ "model.layers.2.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
86
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.20.mlp.gate_up_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.20.self_attn.qkv_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
94
+ "model.layers.21.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.21.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.22.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.22.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.23.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.23.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
111
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.24.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.24.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.25.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.25.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.26.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.26.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.27.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.27.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.28.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.28.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.29.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.29.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.layers.3.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
150
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.layers.3.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
152
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.30.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.30.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.31.mlp.gate_up_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.31.self_attn.qkv_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
165
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
166
+ "model.layers.4.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
167
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
168
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
169
+ "model.layers.4.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
170
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
171
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
172
+ "model.layers.5.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
173
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
174
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
175
+ "model.layers.5.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
176
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
177
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
178
+ "model.layers.6.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
179
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
180
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
181
+ "model.layers.6.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
182
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
183
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
184
+ "model.layers.7.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
185
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
186
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
187
+ "model.layers.7.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
188
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
189
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
190
+ "model.layers.8.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
191
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
192
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
193
+ "model.layers.8.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
194
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
195
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
196
+ "model.layers.9.mlp.gate_up_proj.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
198
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
199
+ "model.layers.9.self_attn.qkv_proj.weight": "model-00001-of-00004.safetensors",
200
+ "model.mm_projector.projector.0.bias": "model-00004-of-00004.safetensors",
201
+ "model.mm_projector.projector.0.weight": "model-00004-of-00004.safetensors",
202
+ "model.mm_projector.projector.2.bias": "model-00004-of-00004.safetensors",
203
+ "model.mm_projector.projector.2.weight": "model-00004-of-00004.safetensors",
204
+ "model.norm.weight": "model-00003-of-00004.safetensors",
205
+ "model.seg_module.image_encoder.blocks.0.attn.out_proj.bias": "model-00004-of-00004.safetensors",
206
+ "model.seg_module.image_encoder.blocks.0.attn.out_proj.weight": "model-00004-of-00004.safetensors",
207
+ "model.seg_module.image_encoder.blocks.0.attn.qkv.weight": "model-00004-of-00004.safetensors",
208
+ "model.seg_module.image_encoder.blocks.0.mlp.linear1.bias": "model-00004-of-00004.safetensors",
209
+ "model.seg_module.image_encoder.blocks.0.mlp.linear1.weight": "model-00004-of-00004.safetensors",
210
+ "model.seg_module.image_encoder.blocks.0.mlp.linear2.bias": "model-00004-of-00004.safetensors",
211
+ "model.seg_module.image_encoder.blocks.0.mlp.linear2.weight": "model-00004-of-00004.safetensors",
212
+ "model.seg_module.image_encoder.blocks.0.norm1.bias": "model-00004-of-00004.safetensors",
213
+ "model.seg_module.image_encoder.blocks.0.norm1.weight": "model-00004-of-00004.safetensors",
214
+ "model.seg_module.image_encoder.blocks.0.norm2.bias": "model-00004-of-00004.safetensors",
215
+ "model.seg_module.image_encoder.blocks.0.norm2.weight": "model-00004-of-00004.safetensors",
216
+ "model.seg_module.image_encoder.blocks.1.attn.out_proj.bias": "model-00004-of-00004.safetensors",
217
+ "model.seg_module.image_encoder.blocks.1.attn.out_proj.weight": "model-00004-of-00004.safetensors",
218
+ "model.seg_module.image_encoder.blocks.1.attn.qkv.weight": "model-00004-of-00004.safetensors",
219
+ "model.seg_module.image_encoder.blocks.1.mlp.linear1.bias": "model-00004-of-00004.safetensors",
220
+ "model.seg_module.image_encoder.blocks.1.mlp.linear1.weight": "model-00004-of-00004.safetensors",
221
+ "model.seg_module.image_encoder.blocks.1.mlp.linear2.bias": "model-00004-of-00004.safetensors",
222
+ "model.seg_module.image_encoder.blocks.1.mlp.linear2.weight": "model-00004-of-00004.safetensors",
223
+ "model.seg_module.image_encoder.blocks.1.norm1.bias": "model-00004-of-00004.safetensors",
224
+ "model.seg_module.image_encoder.blocks.1.norm1.weight": "model-00004-of-00004.safetensors",
225
+ "model.seg_module.image_encoder.blocks.1.norm2.bias": "model-00004-of-00004.safetensors",
226
+ "model.seg_module.image_encoder.blocks.1.norm2.weight": "model-00004-of-00004.safetensors",
227
+ "model.seg_module.image_encoder.blocks.10.attn.out_proj.bias": "model-00004-of-00004.safetensors",
228
+ "model.seg_module.image_encoder.blocks.10.attn.out_proj.weight": "model-00004-of-00004.safetensors",
229
+ "model.seg_module.image_encoder.blocks.10.attn.qkv.weight": "model-00004-of-00004.safetensors",
230
+ "model.seg_module.image_encoder.blocks.10.mlp.linear1.bias": "model-00004-of-00004.safetensors",
231
+ "model.seg_module.image_encoder.blocks.10.mlp.linear1.weight": "model-00004-of-00004.safetensors",
232
+ "model.seg_module.image_encoder.blocks.10.mlp.linear2.bias": "model-00004-of-00004.safetensors",
233
+ "model.seg_module.image_encoder.blocks.10.mlp.linear2.weight": "model-00004-of-00004.safetensors",
234
+ "model.seg_module.image_encoder.blocks.10.norm1.bias": "model-00004-of-00004.safetensors",
235
+ "model.seg_module.image_encoder.blocks.10.norm1.weight": "model-00004-of-00004.safetensors",
236
+ "model.seg_module.image_encoder.blocks.10.norm2.bias": "model-00004-of-00004.safetensors",
237
+ "model.seg_module.image_encoder.blocks.10.norm2.weight": "model-00004-of-00004.safetensors",
238
+ "model.seg_module.image_encoder.blocks.11.attn.out_proj.bias": "model-00004-of-00004.safetensors",
239
+ "model.seg_module.image_encoder.blocks.11.attn.out_proj.weight": "model-00004-of-00004.safetensors",
240
+ "model.seg_module.image_encoder.blocks.11.attn.qkv.weight": "model-00004-of-00004.safetensors",
241
+ "model.seg_module.image_encoder.blocks.11.mlp.linear1.bias": "model-00004-of-00004.safetensors",
242
+ "model.seg_module.image_encoder.blocks.11.mlp.linear1.weight": "model-00004-of-00004.safetensors",
243
+ "model.seg_module.image_encoder.blocks.11.mlp.linear2.bias": "model-00004-of-00004.safetensors",
244
+ "model.seg_module.image_encoder.blocks.11.mlp.linear2.weight": "model-00004-of-00004.safetensors",
245
+ "model.seg_module.image_encoder.blocks.11.norm1.bias": "model-00004-of-00004.safetensors",
246
+ "model.seg_module.image_encoder.blocks.11.norm1.weight": "model-00004-of-00004.safetensors",
247
+ "model.seg_module.image_encoder.blocks.11.norm2.bias": "model-00004-of-00004.safetensors",
248
+ "model.seg_module.image_encoder.blocks.11.norm2.weight": "model-00004-of-00004.safetensors",
249
+ "model.seg_module.image_encoder.blocks.2.attn.out_proj.bias": "model-00004-of-00004.safetensors",
250
+ "model.seg_module.image_encoder.blocks.2.attn.out_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.seg_module.image_encoder.blocks.2.attn.qkv.weight": "model-00004-of-00004.safetensors",
252
+ "model.seg_module.image_encoder.blocks.2.mlp.linear1.bias": "model-00004-of-00004.safetensors",
253
+ "model.seg_module.image_encoder.blocks.2.mlp.linear1.weight": "model-00004-of-00004.safetensors",
254
+ "model.seg_module.image_encoder.blocks.2.mlp.linear2.bias": "model-00004-of-00004.safetensors",
255
+ "model.seg_module.image_encoder.blocks.2.mlp.linear2.weight": "model-00004-of-00004.safetensors",
256
+ "model.seg_module.image_encoder.blocks.2.norm1.bias": "model-00004-of-00004.safetensors",
257
+ "model.seg_module.image_encoder.blocks.2.norm1.weight": "model-00004-of-00004.safetensors",
258
+ "model.seg_module.image_encoder.blocks.2.norm2.bias": "model-00004-of-00004.safetensors",
259
+ "model.seg_module.image_encoder.blocks.2.norm2.weight": "model-00004-of-00004.safetensors",
260
+ "model.seg_module.image_encoder.blocks.3.attn.out_proj.bias": "model-00004-of-00004.safetensors",
261
+ "model.seg_module.image_encoder.blocks.3.attn.out_proj.weight": "model-00004-of-00004.safetensors",
262
+ "model.seg_module.image_encoder.blocks.3.attn.qkv.weight": "model-00004-of-00004.safetensors",
263
+ "model.seg_module.image_encoder.blocks.3.mlp.linear1.bias": "model-00004-of-00004.safetensors",
264
+ "model.seg_module.image_encoder.blocks.3.mlp.linear1.weight": "model-00004-of-00004.safetensors",
265
+ "model.seg_module.image_encoder.blocks.3.mlp.linear2.bias": "model-00004-of-00004.safetensors",
266
+ "model.seg_module.image_encoder.blocks.3.mlp.linear2.weight": "model-00004-of-00004.safetensors",
267
+ "model.seg_module.image_encoder.blocks.3.norm1.bias": "model-00004-of-00004.safetensors",
268
+ "model.seg_module.image_encoder.blocks.3.norm1.weight": "model-00004-of-00004.safetensors",
269
+ "model.seg_module.image_encoder.blocks.3.norm2.bias": "model-00004-of-00004.safetensors",
270
+ "model.seg_module.image_encoder.blocks.3.norm2.weight": "model-00004-of-00004.safetensors",
271
+ "model.seg_module.image_encoder.blocks.4.attn.out_proj.bias": "model-00004-of-00004.safetensors",
272
+ "model.seg_module.image_encoder.blocks.4.attn.out_proj.weight": "model-00004-of-00004.safetensors",
273
+ "model.seg_module.image_encoder.blocks.4.attn.qkv.weight": "model-00004-of-00004.safetensors",
274
+ "model.seg_module.image_encoder.blocks.4.mlp.linear1.bias": "model-00004-of-00004.safetensors",
275
+ "model.seg_module.image_encoder.blocks.4.mlp.linear1.weight": "model-00004-of-00004.safetensors",
276
+ "model.seg_module.image_encoder.blocks.4.mlp.linear2.bias": "model-00004-of-00004.safetensors",
277
+ "model.seg_module.image_encoder.blocks.4.mlp.linear2.weight": "model-00004-of-00004.safetensors",
278
+ "model.seg_module.image_encoder.blocks.4.norm1.bias": "model-00004-of-00004.safetensors",
279
+ "model.seg_module.image_encoder.blocks.4.norm1.weight": "model-00004-of-00004.safetensors",
280
+ "model.seg_module.image_encoder.blocks.4.norm2.bias": "model-00004-of-00004.safetensors",
281
+ "model.seg_module.image_encoder.blocks.4.norm2.weight": "model-00004-of-00004.safetensors",
282
+ "model.seg_module.image_encoder.blocks.5.attn.out_proj.bias": "model-00004-of-00004.safetensors",
283
+ "model.seg_module.image_encoder.blocks.5.attn.out_proj.weight": "model-00004-of-00004.safetensors",
284
+ "model.seg_module.image_encoder.blocks.5.attn.qkv.weight": "model-00004-of-00004.safetensors",
285
+ "model.seg_module.image_encoder.blocks.5.mlp.linear1.bias": "model-00004-of-00004.safetensors",
286
+ "model.seg_module.image_encoder.blocks.5.mlp.linear1.weight": "model-00004-of-00004.safetensors",
287
+ "model.seg_module.image_encoder.blocks.5.mlp.linear2.bias": "model-00004-of-00004.safetensors",
288
+ "model.seg_module.image_encoder.blocks.5.mlp.linear2.weight": "model-00004-of-00004.safetensors",
289
+ "model.seg_module.image_encoder.blocks.5.norm1.bias": "model-00004-of-00004.safetensors",
290
+ "model.seg_module.image_encoder.blocks.5.norm1.weight": "model-00004-of-00004.safetensors",
291
+ "model.seg_module.image_encoder.blocks.5.norm2.bias": "model-00004-of-00004.safetensors",
292
+ "model.seg_module.image_encoder.blocks.5.norm2.weight": "model-00004-of-00004.safetensors",
293
+ "model.seg_module.image_encoder.blocks.6.attn.out_proj.bias": "model-00004-of-00004.safetensors",
294
+ "model.seg_module.image_encoder.blocks.6.attn.out_proj.weight": "model-00004-of-00004.safetensors",
295
+ "model.seg_module.image_encoder.blocks.6.attn.qkv.weight": "model-00004-of-00004.safetensors",
296
+ "model.seg_module.image_encoder.blocks.6.mlp.linear1.bias": "model-00004-of-00004.safetensors",
297
+ "model.seg_module.image_encoder.blocks.6.mlp.linear1.weight": "model-00004-of-00004.safetensors",
298
+ "model.seg_module.image_encoder.blocks.6.mlp.linear2.bias": "model-00004-of-00004.safetensors",
299
+ "model.seg_module.image_encoder.blocks.6.mlp.linear2.weight": "model-00004-of-00004.safetensors",
300
+ "model.seg_module.image_encoder.blocks.6.norm1.bias": "model-00004-of-00004.safetensors",
301
+ "model.seg_module.image_encoder.blocks.6.norm1.weight": "model-00004-of-00004.safetensors",
302
+ "model.seg_module.image_encoder.blocks.6.norm2.bias": "model-00004-of-00004.safetensors",
303
+ "model.seg_module.image_encoder.blocks.6.norm2.weight": "model-00004-of-00004.safetensors",
304
+ "model.seg_module.image_encoder.blocks.7.attn.out_proj.bias": "model-00004-of-00004.safetensors",
305
+ "model.seg_module.image_encoder.blocks.7.attn.out_proj.weight": "model-00004-of-00004.safetensors",
306
+ "model.seg_module.image_encoder.blocks.7.attn.qkv.weight": "model-00004-of-00004.safetensors",
307
+ "model.seg_module.image_encoder.blocks.7.mlp.linear1.bias": "model-00004-of-00004.safetensors",
308
+ "model.seg_module.image_encoder.blocks.7.mlp.linear1.weight": "model-00004-of-00004.safetensors",
309
+ "model.seg_module.image_encoder.blocks.7.mlp.linear2.bias": "model-00004-of-00004.safetensors",
310
+ "model.seg_module.image_encoder.blocks.7.mlp.linear2.weight": "model-00004-of-00004.safetensors",
311
+ "model.seg_module.image_encoder.blocks.7.norm1.bias": "model-00004-of-00004.safetensors",
312
+ "model.seg_module.image_encoder.blocks.7.norm1.weight": "model-00004-of-00004.safetensors",
313
+ "model.seg_module.image_encoder.blocks.7.norm2.bias": "model-00004-of-00004.safetensors",
314
+ "model.seg_module.image_encoder.blocks.7.norm2.weight": "model-00004-of-00004.safetensors",
315
+ "model.seg_module.image_encoder.blocks.8.attn.out_proj.bias": "model-00004-of-00004.safetensors",
316
+ "model.seg_module.image_encoder.blocks.8.attn.out_proj.weight": "model-00004-of-00004.safetensors",
317
+ "model.seg_module.image_encoder.blocks.8.attn.qkv.weight": "model-00004-of-00004.safetensors",
318
+ "model.seg_module.image_encoder.blocks.8.mlp.linear1.bias": "model-00004-of-00004.safetensors",
319
+ "model.seg_module.image_encoder.blocks.8.mlp.linear1.weight": "model-00004-of-00004.safetensors",
320
+ "model.seg_module.image_encoder.blocks.8.mlp.linear2.bias": "model-00004-of-00004.safetensors",
321
+ "model.seg_module.image_encoder.blocks.8.mlp.linear2.weight": "model-00004-of-00004.safetensors",
322
+ "model.seg_module.image_encoder.blocks.8.norm1.bias": "model-00004-of-00004.safetensors",
323
+ "model.seg_module.image_encoder.blocks.8.norm1.weight": "model-00004-of-00004.safetensors",
324
+ "model.seg_module.image_encoder.blocks.8.norm2.bias": "model-00004-of-00004.safetensors",
325
+ "model.seg_module.image_encoder.blocks.8.norm2.weight": "model-00004-of-00004.safetensors",
326
+ "model.seg_module.image_encoder.blocks.9.attn.out_proj.bias": "model-00004-of-00004.safetensors",
327
+ "model.seg_module.image_encoder.blocks.9.attn.out_proj.weight": "model-00004-of-00004.safetensors",
328
+ "model.seg_module.image_encoder.blocks.9.attn.qkv.weight": "model-00004-of-00004.safetensors",
329
+ "model.seg_module.image_encoder.blocks.9.mlp.linear1.bias": "model-00004-of-00004.safetensors",
330
+ "model.seg_module.image_encoder.blocks.9.mlp.linear1.weight": "model-00004-of-00004.safetensors",
331
+ "model.seg_module.image_encoder.blocks.9.mlp.linear2.bias": "model-00004-of-00004.safetensors",
332
+ "model.seg_module.image_encoder.blocks.9.mlp.linear2.weight": "model-00004-of-00004.safetensors",
333
+ "model.seg_module.image_encoder.blocks.9.norm1.bias": "model-00004-of-00004.safetensors",
334
+ "model.seg_module.image_encoder.blocks.9.norm1.weight": "model-00004-of-00004.safetensors",
335
+ "model.seg_module.image_encoder.blocks.9.norm2.bias": "model-00004-of-00004.safetensors",
336
+ "model.seg_module.image_encoder.blocks.9.norm2.weight": "model-00004-of-00004.safetensors",
337
+ "model.seg_module.image_encoder.norm.bias": "model-00004-of-00004.safetensors",
338
+ "model.seg_module.image_encoder.norm.weight": "model-00004-of-00004.safetensors",
339
+ "model.seg_module.image_encoder.patch_embedding.patch_embeddings.1.bias": "model-00004-of-00004.safetensors",
340
+ "model.seg_module.image_encoder.patch_embedding.patch_embeddings.1.weight": "model-00004-of-00004.safetensors",
341
+ "model.seg_module.image_encoder.patch_embedding.position_embeddings": "model-00004-of-00004.safetensors",
342
+ "model.seg_module.mask_decoder.iou_prediction_head.layers.0.bias": "model-00004-of-00004.safetensors",
343
+ "model.seg_module.mask_decoder.iou_prediction_head.layers.0.weight": "model-00004-of-00004.safetensors",
344
+ "model.seg_module.mask_decoder.iou_prediction_head.layers.1.bias": "model-00004-of-00004.safetensors",
345
+ "model.seg_module.mask_decoder.iou_prediction_head.layers.1.weight": "model-00004-of-00004.safetensors",
346
+ "model.seg_module.mask_decoder.iou_prediction_head.layers.2.bias": "model-00004-of-00004.safetensors",
347
+ "model.seg_module.mask_decoder.iou_prediction_head.layers.2.weight": "model-00004-of-00004.safetensors",
348
+ "model.seg_module.mask_decoder.iou_token.weight": "model-00004-of-00004.safetensors",
349
+ "model.seg_module.mask_decoder.mask_tokens.weight": "model-00004-of-00004.safetensors",
350
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.0.layers.0.bias": "model-00004-of-00004.safetensors",
351
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.0.layers.0.weight": "model-00004-of-00004.safetensors",
352
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.0.layers.1.bias": "model-00004-of-00004.safetensors",
353
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.0.layers.1.weight": "model-00004-of-00004.safetensors",
354
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.0.layers.2.bias": "model-00004-of-00004.safetensors",
355
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.0.layers.2.weight": "model-00004-of-00004.safetensors",
356
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.1.layers.0.bias": "model-00004-of-00004.safetensors",
357
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.1.layers.0.weight": "model-00004-of-00004.safetensors",
358
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.1.layers.1.bias": "model-00004-of-00004.safetensors",
359
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.1.layers.1.weight": "model-00004-of-00004.safetensors",
360
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.1.layers.2.bias": "model-00004-of-00004.safetensors",
361
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.1.layers.2.weight": "model-00004-of-00004.safetensors",
362
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.2.layers.0.bias": "model-00004-of-00004.safetensors",
363
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.2.layers.0.weight": "model-00004-of-00004.safetensors",
364
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.2.layers.1.bias": "model-00004-of-00004.safetensors",
365
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.2.layers.1.weight": "model-00004-of-00004.safetensors",
366
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.2.layers.2.bias": "model-00004-of-00004.safetensors",
367
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.2.layers.2.weight": "model-00004-of-00004.safetensors",
368
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.3.layers.0.bias": "model-00004-of-00004.safetensors",
369
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.3.layers.0.weight": "model-00004-of-00004.safetensors",
370
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.3.layers.1.bias": "model-00004-of-00004.safetensors",
371
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.3.layers.1.weight": "model-00004-of-00004.safetensors",
372
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.3.layers.2.bias": "model-00004-of-00004.safetensors",
373
+ "model.seg_module.mask_decoder.output_hypernetworks_mlps.3.layers.2.weight": "model-00004-of-00004.safetensors",
374
+ "model.seg_module.mask_decoder.output_upscaling.0.bias": "model-00004-of-00004.safetensors",
375
+ "model.seg_module.mask_decoder.output_upscaling.0.weight": "model-00004-of-00004.safetensors",
376
+ "model.seg_module.mask_decoder.output_upscaling.1.bias": "model-00004-of-00004.safetensors",
377
+ "model.seg_module.mask_decoder.output_upscaling.1.weight": "model-00004-of-00004.safetensors",
378
+ "model.seg_module.mask_decoder.output_upscaling.3.bias": "model-00004-of-00004.safetensors",
379
+ "model.seg_module.mask_decoder.output_upscaling.3.weight": "model-00004-of-00004.safetensors",
380
+ "model.seg_module.mask_decoder.transformer.final_attn_token_to_image.k_proj.bias": "model-00004-of-00004.safetensors",
381
+ "model.seg_module.mask_decoder.transformer.final_attn_token_to_image.k_proj.weight": "model-00004-of-00004.safetensors",
382
+ "model.seg_module.mask_decoder.transformer.final_attn_token_to_image.out_proj.bias": "model-00004-of-00004.safetensors",
383
+ "model.seg_module.mask_decoder.transformer.final_attn_token_to_image.out_proj.weight": "model-00004-of-00004.safetensors",
384
+ "model.seg_module.mask_decoder.transformer.final_attn_token_to_image.q_proj.bias": "model-00004-of-00004.safetensors",
385
+ "model.seg_module.mask_decoder.transformer.final_attn_token_to_image.q_proj.weight": "model-00004-of-00004.safetensors",
386
+ "model.seg_module.mask_decoder.transformer.final_attn_token_to_image.v_proj.bias": "model-00004-of-00004.safetensors",
387
+ "model.seg_module.mask_decoder.transformer.final_attn_token_to_image.v_proj.weight": "model-00004-of-00004.safetensors",
388
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_image_to_token.k_proj.bias": "model-00004-of-00004.safetensors",
389
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_image_to_token.k_proj.weight": "model-00004-of-00004.safetensors",
390
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_image_to_token.out_proj.bias": "model-00004-of-00004.safetensors",
391
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_image_to_token.out_proj.weight": "model-00004-of-00004.safetensors",
392
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_image_to_token.q_proj.bias": "model-00004-of-00004.safetensors",
393
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_image_to_token.q_proj.weight": "model-00004-of-00004.safetensors",
394
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_image_to_token.v_proj.bias": "model-00004-of-00004.safetensors",
395
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_image_to_token.v_proj.weight": "model-00004-of-00004.safetensors",
396
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_token_to_image.k_proj.bias": "model-00004-of-00004.safetensors",
397
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_token_to_image.k_proj.weight": "model-00004-of-00004.safetensors",
398
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_token_to_image.out_proj.bias": "model-00004-of-00004.safetensors",
399
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_token_to_image.out_proj.weight": "model-00004-of-00004.safetensors",
400
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_token_to_image.q_proj.bias": "model-00004-of-00004.safetensors",
401
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_token_to_image.q_proj.weight": "model-00004-of-00004.safetensors",
402
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_token_to_image.v_proj.bias": "model-00004-of-00004.safetensors",
403
+ "model.seg_module.mask_decoder.transformer.layers.0.cross_attn_token_to_image.v_proj.weight": "model-00004-of-00004.safetensors",
404
+ "model.seg_module.mask_decoder.transformer.layers.0.mlp.lin1.bias": "model-00004-of-00004.safetensors",
405
+ "model.seg_module.mask_decoder.transformer.layers.0.mlp.lin1.weight": "model-00004-of-00004.safetensors",
406
+ "model.seg_module.mask_decoder.transformer.layers.0.mlp.lin2.bias": "model-00004-of-00004.safetensors",
407
+ "model.seg_module.mask_decoder.transformer.layers.0.mlp.lin2.weight": "model-00004-of-00004.safetensors",
408
+ "model.seg_module.mask_decoder.transformer.layers.0.norm1.bias": "model-00004-of-00004.safetensors",
409
+ "model.seg_module.mask_decoder.transformer.layers.0.norm1.weight": "model-00004-of-00004.safetensors",
410
+ "model.seg_module.mask_decoder.transformer.layers.0.norm2.bias": "model-00004-of-00004.safetensors",
411
+ "model.seg_module.mask_decoder.transformer.layers.0.norm2.weight": "model-00004-of-00004.safetensors",
412
+ "model.seg_module.mask_decoder.transformer.layers.0.norm3.bias": "model-00004-of-00004.safetensors",
413
+ "model.seg_module.mask_decoder.transformer.layers.0.norm3.weight": "model-00004-of-00004.safetensors",
414
+ "model.seg_module.mask_decoder.transformer.layers.0.norm4.bias": "model-00004-of-00004.safetensors",
415
+ "model.seg_module.mask_decoder.transformer.layers.0.norm4.weight": "model-00004-of-00004.safetensors",
416
+ "model.seg_module.mask_decoder.transformer.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
417
+ "model.seg_module.mask_decoder.transformer.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
418
+ "model.seg_module.mask_decoder.transformer.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
419
+ "model.seg_module.mask_decoder.transformer.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
420
+ "model.seg_module.mask_decoder.transformer.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
421
+ "model.seg_module.mask_decoder.transformer.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
422
+ "model.seg_module.mask_decoder.transformer.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
423
+ "model.seg_module.mask_decoder.transformer.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
424
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_image_to_token.k_proj.bias": "model-00004-of-00004.safetensors",
425
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_image_to_token.k_proj.weight": "model-00004-of-00004.safetensors",
426
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_image_to_token.out_proj.bias": "model-00004-of-00004.safetensors",
427
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_image_to_token.out_proj.weight": "model-00004-of-00004.safetensors",
428
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_image_to_token.q_proj.bias": "model-00004-of-00004.safetensors",
429
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_image_to_token.q_proj.weight": "model-00004-of-00004.safetensors",
430
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_image_to_token.v_proj.bias": "model-00004-of-00004.safetensors",
431
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_image_to_token.v_proj.weight": "model-00004-of-00004.safetensors",
432
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_token_to_image.k_proj.bias": "model-00004-of-00004.safetensors",
433
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_token_to_image.k_proj.weight": "model-00004-of-00004.safetensors",
434
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_token_to_image.out_proj.bias": "model-00004-of-00004.safetensors",
435
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_token_to_image.out_proj.weight": "model-00004-of-00004.safetensors",
436
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_token_to_image.q_proj.bias": "model-00004-of-00004.safetensors",
437
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_token_to_image.q_proj.weight": "model-00004-of-00004.safetensors",
438
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_token_to_image.v_proj.bias": "model-00004-of-00004.safetensors",
439
+ "model.seg_module.mask_decoder.transformer.layers.1.cross_attn_token_to_image.v_proj.weight": "model-00004-of-00004.safetensors",
440
+ "model.seg_module.mask_decoder.transformer.layers.1.mlp.lin1.bias": "model-00004-of-00004.safetensors",
441
+ "model.seg_module.mask_decoder.transformer.layers.1.mlp.lin1.weight": "model-00004-of-00004.safetensors",
442
+ "model.seg_module.mask_decoder.transformer.layers.1.mlp.lin2.bias": "model-00004-of-00004.safetensors",
443
+ "model.seg_module.mask_decoder.transformer.layers.1.mlp.lin2.weight": "model-00004-of-00004.safetensors",
444
+ "model.seg_module.mask_decoder.transformer.layers.1.norm1.bias": "model-00004-of-00004.safetensors",
445
+ "model.seg_module.mask_decoder.transformer.layers.1.norm1.weight": "model-00004-of-00004.safetensors",
446
+ "model.seg_module.mask_decoder.transformer.layers.1.norm2.bias": "model-00004-of-00004.safetensors",
447
+ "model.seg_module.mask_decoder.transformer.layers.1.norm2.weight": "model-00004-of-00004.safetensors",
448
+ "model.seg_module.mask_decoder.transformer.layers.1.norm3.bias": "model-00004-of-00004.safetensors",
449
+ "model.seg_module.mask_decoder.transformer.layers.1.norm3.weight": "model-00004-of-00004.safetensors",
450
+ "model.seg_module.mask_decoder.transformer.layers.1.norm4.bias": "model-00004-of-00004.safetensors",
451
+ "model.seg_module.mask_decoder.transformer.layers.1.norm4.weight": "model-00004-of-00004.safetensors",
452
+ "model.seg_module.mask_decoder.transformer.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
453
+ "model.seg_module.mask_decoder.transformer.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
454
+ "model.seg_module.mask_decoder.transformer.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
455
+ "model.seg_module.mask_decoder.transformer.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
456
+ "model.seg_module.mask_decoder.transformer.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
457
+ "model.seg_module.mask_decoder.transformer.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
458
+ "model.seg_module.mask_decoder.transformer.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
459
+ "model.seg_module.mask_decoder.transformer.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
460
+ "model.seg_module.mask_decoder.transformer.norm_final_attn.bias": "model-00004-of-00004.safetensors",
461
+ "model.seg_module.mask_decoder.transformer.norm_final_attn.weight": "model-00004-of-00004.safetensors",
462
+ "model.seg_module.mask_decoder.txt_align_upscaled_embedding.bias": "model-00004-of-00004.safetensors",
463
+ "model.seg_module.mask_decoder.txt_align_upscaled_embedding.weight": "model-00004-of-00004.safetensors",
464
+ "model.seg_module.prompt_encoder.mask_downscaling.0.bias": "model-00004-of-00004.safetensors",
465
+ "model.seg_module.prompt_encoder.mask_downscaling.0.weight": "model-00004-of-00004.safetensors",
466
+ "model.seg_module.prompt_encoder.mask_downscaling.1.bias": "model-00004-of-00004.safetensors",
467
+ "model.seg_module.prompt_encoder.mask_downscaling.1.weight": "model-00004-of-00004.safetensors",
468
+ "model.seg_module.prompt_encoder.mask_downscaling.3.bias": "model-00004-of-00004.safetensors",
469
+ "model.seg_module.prompt_encoder.mask_downscaling.3.weight": "model-00004-of-00004.safetensors",
470
+ "model.seg_module.prompt_encoder.mask_downscaling.4.bias": "model-00004-of-00004.safetensors",
471
+ "model.seg_module.prompt_encoder.mask_downscaling.4.weight": "model-00004-of-00004.safetensors",
472
+ "model.seg_module.prompt_encoder.mask_downscaling.6.bias": "model-00004-of-00004.safetensors",
473
+ "model.seg_module.prompt_encoder.mask_downscaling.6.weight": "model-00004-of-00004.safetensors",
474
+ "model.seg_module.prompt_encoder.no_mask_embed.weight": "model-00004-of-00004.safetensors",
475
+ "model.seg_module.prompt_encoder.not_a_point_embed.weight": "model-00004-of-00004.safetensors",
476
+ "model.seg_module.prompt_encoder.pe_layer.positional_encoding_gaussian_matrix": "model-00004-of-00004.safetensors",
477
+ "model.seg_module.prompt_encoder.point_embeddings.0.weight": "model-00004-of-00004.safetensors",
478
+ "model.seg_module.prompt_encoder.point_embeddings.1.weight": "model-00004-of-00004.safetensors",
479
+ "model.seg_module.prompt_encoder.point_embeddings.2.weight": "model-00004-of-00004.safetensors",
480
+ "model.seg_module.prompt_encoder.point_embeddings.3.weight": "model-00004-of-00004.safetensors",
481
+ "model.seg_projector.0.bias": "model-00004-of-00004.safetensors",
482
+ "model.seg_projector.0.weight": "model-00004-of-00004.safetensors",
483
+ "model.seg_projector.2.bias": "model-00004-of-00004.safetensors",
484
+ "model.seg_projector.2.weight": "model-00004-of-00004.safetensors",
485
+ "model.vision_tower.vision_tower.blocks.0.attn.out_proj.bias": "model-00003-of-00004.safetensors",
486
+ "model.vision_tower.vision_tower.blocks.0.attn.out_proj.weight": "model-00003-of-00004.safetensors",
487
+ "model.vision_tower.vision_tower.blocks.0.attn.qkv.weight": "model-00003-of-00004.safetensors",
488
+ "model.vision_tower.vision_tower.blocks.0.mlp.linear1.bias": "model-00003-of-00004.safetensors",
489
+ "model.vision_tower.vision_tower.blocks.0.mlp.linear1.weight": "model-00003-of-00004.safetensors",
490
+ "model.vision_tower.vision_tower.blocks.0.mlp.linear2.bias": "model-00003-of-00004.safetensors",
491
+ "model.vision_tower.vision_tower.blocks.0.mlp.linear2.weight": "model-00003-of-00004.safetensors",
492
+ "model.vision_tower.vision_tower.blocks.0.norm1.bias": "model-00003-of-00004.safetensors",
493
+ "model.vision_tower.vision_tower.blocks.0.norm1.weight": "model-00003-of-00004.safetensors",
494
+ "model.vision_tower.vision_tower.blocks.0.norm2.bias": "model-00003-of-00004.safetensors",
495
+ "model.vision_tower.vision_tower.blocks.0.norm2.weight": "model-00003-of-00004.safetensors",
496
+ "model.vision_tower.vision_tower.blocks.1.attn.out_proj.bias": "model-00004-of-00004.safetensors",
497
+ "model.vision_tower.vision_tower.blocks.1.attn.out_proj.weight": "model-00004-of-00004.safetensors",
498
+ "model.vision_tower.vision_tower.blocks.1.attn.qkv.weight": "model-00004-of-00004.safetensors",
499
+ "model.vision_tower.vision_tower.blocks.1.mlp.linear1.bias": "model-00003-of-00004.safetensors",
500
+ "model.vision_tower.vision_tower.blocks.1.mlp.linear1.weight": "model-00003-of-00004.safetensors",
501
+ "model.vision_tower.vision_tower.blocks.1.mlp.linear2.bias": "model-00004-of-00004.safetensors",
502
+ "model.vision_tower.vision_tower.blocks.1.mlp.linear2.weight": "model-00004-of-00004.safetensors",
503
+ "model.vision_tower.vision_tower.blocks.1.norm1.bias": "model-00004-of-00004.safetensors",
504
+ "model.vision_tower.vision_tower.blocks.1.norm1.weight": "model-00004-of-00004.safetensors",
505
+ "model.vision_tower.vision_tower.blocks.1.norm2.bias": "model-00004-of-00004.safetensors",
506
+ "model.vision_tower.vision_tower.blocks.1.norm2.weight": "model-00004-of-00004.safetensors",
507
+ "model.vision_tower.vision_tower.blocks.10.attn.out_proj.bias": "model-00004-of-00004.safetensors",
508
+ "model.vision_tower.vision_tower.blocks.10.attn.out_proj.weight": "model-00004-of-00004.safetensors",
509
+ "model.vision_tower.vision_tower.blocks.10.attn.qkv.weight": "model-00004-of-00004.safetensors",
510
+ "model.vision_tower.vision_tower.blocks.10.mlp.linear1.bias": "model-00004-of-00004.safetensors",
511
+ "model.vision_tower.vision_tower.blocks.10.mlp.linear1.weight": "model-00004-of-00004.safetensors",
512
+ "model.vision_tower.vision_tower.blocks.10.mlp.linear2.bias": "model-00004-of-00004.safetensors",
513
+ "model.vision_tower.vision_tower.blocks.10.mlp.linear2.weight": "model-00004-of-00004.safetensors",
514
+ "model.vision_tower.vision_tower.blocks.10.norm1.bias": "model-00004-of-00004.safetensors",
515
+ "model.vision_tower.vision_tower.blocks.10.norm1.weight": "model-00004-of-00004.safetensors",
516
+ "model.vision_tower.vision_tower.blocks.10.norm2.bias": "model-00004-of-00004.safetensors",
517
+ "model.vision_tower.vision_tower.blocks.10.norm2.weight": "model-00004-of-00004.safetensors",
518
+ "model.vision_tower.vision_tower.blocks.11.attn.out_proj.bias": "model-00004-of-00004.safetensors",
519
+ "model.vision_tower.vision_tower.blocks.11.attn.out_proj.weight": "model-00004-of-00004.safetensors",
520
+ "model.vision_tower.vision_tower.blocks.11.attn.qkv.weight": "model-00004-of-00004.safetensors",
521
+ "model.vision_tower.vision_tower.blocks.11.mlp.linear1.bias": "model-00004-of-00004.safetensors",
522
+ "model.vision_tower.vision_tower.blocks.11.mlp.linear1.weight": "model-00004-of-00004.safetensors",
523
+ "model.vision_tower.vision_tower.blocks.11.mlp.linear2.bias": "model-00004-of-00004.safetensors",
524
+ "model.vision_tower.vision_tower.blocks.11.mlp.linear2.weight": "model-00004-of-00004.safetensors",
525
+ "model.vision_tower.vision_tower.blocks.11.norm1.bias": "model-00004-of-00004.safetensors",
526
+ "model.vision_tower.vision_tower.blocks.11.norm1.weight": "model-00004-of-00004.safetensors",
527
+ "model.vision_tower.vision_tower.blocks.11.norm2.bias": "model-00004-of-00004.safetensors",
528
+ "model.vision_tower.vision_tower.blocks.11.norm2.weight": "model-00004-of-00004.safetensors",
529
+ "model.vision_tower.vision_tower.blocks.2.attn.out_proj.bias": "model-00004-of-00004.safetensors",
530
+ "model.vision_tower.vision_tower.blocks.2.attn.out_proj.weight": "model-00004-of-00004.safetensors",
531
+ "model.vision_tower.vision_tower.blocks.2.attn.qkv.weight": "model-00004-of-00004.safetensors",
532
+ "model.vision_tower.vision_tower.blocks.2.mlp.linear1.bias": "model-00004-of-00004.safetensors",
533
+ "model.vision_tower.vision_tower.blocks.2.mlp.linear1.weight": "model-00004-of-00004.safetensors",
534
+ "model.vision_tower.vision_tower.blocks.2.mlp.linear2.bias": "model-00004-of-00004.safetensors",
535
+ "model.vision_tower.vision_tower.blocks.2.mlp.linear2.weight": "model-00004-of-00004.safetensors",
536
+ "model.vision_tower.vision_tower.blocks.2.norm1.bias": "model-00004-of-00004.safetensors",
537
+ "model.vision_tower.vision_tower.blocks.2.norm1.weight": "model-00004-of-00004.safetensors",
538
+ "model.vision_tower.vision_tower.blocks.2.norm2.bias": "model-00004-of-00004.safetensors",
539
+ "model.vision_tower.vision_tower.blocks.2.norm2.weight": "model-00004-of-00004.safetensors",
540
+ "model.vision_tower.vision_tower.blocks.3.attn.out_proj.bias": "model-00004-of-00004.safetensors",
541
+ "model.vision_tower.vision_tower.blocks.3.attn.out_proj.weight": "model-00004-of-00004.safetensors",
542
+ "model.vision_tower.vision_tower.blocks.3.attn.qkv.weight": "model-00004-of-00004.safetensors",
543
+ "model.vision_tower.vision_tower.blocks.3.mlp.linear1.bias": "model-00004-of-00004.safetensors",
544
+ "model.vision_tower.vision_tower.blocks.3.mlp.linear1.weight": "model-00004-of-00004.safetensors",
545
+ "model.vision_tower.vision_tower.blocks.3.mlp.linear2.bias": "model-00004-of-00004.safetensors",
546
+ "model.vision_tower.vision_tower.blocks.3.mlp.linear2.weight": "model-00004-of-00004.safetensors",
547
+ "model.vision_tower.vision_tower.blocks.3.norm1.bias": "model-00004-of-00004.safetensors",
548
+ "model.vision_tower.vision_tower.blocks.3.norm1.weight": "model-00004-of-00004.safetensors",
549
+ "model.vision_tower.vision_tower.blocks.3.norm2.bias": "model-00004-of-00004.safetensors",
550
+ "model.vision_tower.vision_tower.blocks.3.norm2.weight": "model-00004-of-00004.safetensors",
551
+ "model.vision_tower.vision_tower.blocks.4.attn.out_proj.bias": "model-00004-of-00004.safetensors",
552
+ "model.vision_tower.vision_tower.blocks.4.attn.out_proj.weight": "model-00004-of-00004.safetensors",
553
+ "model.vision_tower.vision_tower.blocks.4.attn.qkv.weight": "model-00004-of-00004.safetensors",
554
+ "model.vision_tower.vision_tower.blocks.4.mlp.linear1.bias": "model-00004-of-00004.safetensors",
555
+ "model.vision_tower.vision_tower.blocks.4.mlp.linear1.weight": "model-00004-of-00004.safetensors",
556
+ "model.vision_tower.vision_tower.blocks.4.mlp.linear2.bias": "model-00004-of-00004.safetensors",
557
+ "model.vision_tower.vision_tower.blocks.4.mlp.linear2.weight": "model-00004-of-00004.safetensors",
558
+ "model.vision_tower.vision_tower.blocks.4.norm1.bias": "model-00004-of-00004.safetensors",
559
+ "model.vision_tower.vision_tower.blocks.4.norm1.weight": "model-00004-of-00004.safetensors",
560
+ "model.vision_tower.vision_tower.blocks.4.norm2.bias": "model-00004-of-00004.safetensors",
561
+ "model.vision_tower.vision_tower.blocks.4.norm2.weight": "model-00004-of-00004.safetensors",
562
+ "model.vision_tower.vision_tower.blocks.5.attn.out_proj.bias": "model-00004-of-00004.safetensors",
563
+ "model.vision_tower.vision_tower.blocks.5.attn.out_proj.weight": "model-00004-of-00004.safetensors",
564
+ "model.vision_tower.vision_tower.blocks.5.attn.qkv.weight": "model-00004-of-00004.safetensors",
565
+ "model.vision_tower.vision_tower.blocks.5.mlp.linear1.bias": "model-00004-of-00004.safetensors",
566
+ "model.vision_tower.vision_tower.blocks.5.mlp.linear1.weight": "model-00004-of-00004.safetensors",
567
+ "model.vision_tower.vision_tower.blocks.5.mlp.linear2.bias": "model-00004-of-00004.safetensors",
568
+ "model.vision_tower.vision_tower.blocks.5.mlp.linear2.weight": "model-00004-of-00004.safetensors",
569
+ "model.vision_tower.vision_tower.blocks.5.norm1.bias": "model-00004-of-00004.safetensors",
570
+ "model.vision_tower.vision_tower.blocks.5.norm1.weight": "model-00004-of-00004.safetensors",
571
+ "model.vision_tower.vision_tower.blocks.5.norm2.bias": "model-00004-of-00004.safetensors",
572
+ "model.vision_tower.vision_tower.blocks.5.norm2.weight": "model-00004-of-00004.safetensors",
573
+ "model.vision_tower.vision_tower.blocks.6.attn.out_proj.bias": "model-00004-of-00004.safetensors",
574
+ "model.vision_tower.vision_tower.blocks.6.attn.out_proj.weight": "model-00004-of-00004.safetensors",
575
+ "model.vision_tower.vision_tower.blocks.6.attn.qkv.weight": "model-00004-of-00004.safetensors",
576
+ "model.vision_tower.vision_tower.blocks.6.mlp.linear1.bias": "model-00004-of-00004.safetensors",
577
+ "model.vision_tower.vision_tower.blocks.6.mlp.linear1.weight": "model-00004-of-00004.safetensors",
578
+ "model.vision_tower.vision_tower.blocks.6.mlp.linear2.bias": "model-00004-of-00004.safetensors",
579
+ "model.vision_tower.vision_tower.blocks.6.mlp.linear2.weight": "model-00004-of-00004.safetensors",
580
+ "model.vision_tower.vision_tower.blocks.6.norm1.bias": "model-00004-of-00004.safetensors",
581
+ "model.vision_tower.vision_tower.blocks.6.norm1.weight": "model-00004-of-00004.safetensors",
582
+ "model.vision_tower.vision_tower.blocks.6.norm2.bias": "model-00004-of-00004.safetensors",
583
+ "model.vision_tower.vision_tower.blocks.6.norm2.weight": "model-00004-of-00004.safetensors",
584
+ "model.vision_tower.vision_tower.blocks.7.attn.out_proj.bias": "model-00004-of-00004.safetensors",
585
+ "model.vision_tower.vision_tower.blocks.7.attn.out_proj.weight": "model-00004-of-00004.safetensors",
586
+ "model.vision_tower.vision_tower.blocks.7.attn.qkv.weight": "model-00004-of-00004.safetensors",
587
+ "model.vision_tower.vision_tower.blocks.7.mlp.linear1.bias": "model-00004-of-00004.safetensors",
588
+ "model.vision_tower.vision_tower.blocks.7.mlp.linear1.weight": "model-00004-of-00004.safetensors",
589
+ "model.vision_tower.vision_tower.blocks.7.mlp.linear2.bias": "model-00004-of-00004.safetensors",
590
+ "model.vision_tower.vision_tower.blocks.7.mlp.linear2.weight": "model-00004-of-00004.safetensors",
591
+ "model.vision_tower.vision_tower.blocks.7.norm1.bias": "model-00004-of-00004.safetensors",
592
+ "model.vision_tower.vision_tower.blocks.7.norm1.weight": "model-00004-of-00004.safetensors",
593
+ "model.vision_tower.vision_tower.blocks.7.norm2.bias": "model-00004-of-00004.safetensors",
594
+ "model.vision_tower.vision_tower.blocks.7.norm2.weight": "model-00004-of-00004.safetensors",
595
+ "model.vision_tower.vision_tower.blocks.8.attn.out_proj.bias": "model-00004-of-00004.safetensors",
596
+ "model.vision_tower.vision_tower.blocks.8.attn.out_proj.weight": "model-00004-of-00004.safetensors",
597
+ "model.vision_tower.vision_tower.blocks.8.attn.qkv.weight": "model-00004-of-00004.safetensors",
598
+ "model.vision_tower.vision_tower.blocks.8.mlp.linear1.bias": "model-00004-of-00004.safetensors",
599
+ "model.vision_tower.vision_tower.blocks.8.mlp.linear1.weight": "model-00004-of-00004.safetensors",
600
+ "model.vision_tower.vision_tower.blocks.8.mlp.linear2.bias": "model-00004-of-00004.safetensors",
601
+ "model.vision_tower.vision_tower.blocks.8.mlp.linear2.weight": "model-00004-of-00004.safetensors",
602
+ "model.vision_tower.vision_tower.blocks.8.norm1.bias": "model-00004-of-00004.safetensors",
603
+ "model.vision_tower.vision_tower.blocks.8.norm1.weight": "model-00004-of-00004.safetensors",
604
+ "model.vision_tower.vision_tower.blocks.8.norm2.bias": "model-00004-of-00004.safetensors",
605
+ "model.vision_tower.vision_tower.blocks.8.norm2.weight": "model-00004-of-00004.safetensors",
606
+ "model.vision_tower.vision_tower.blocks.9.attn.out_proj.bias": "model-00004-of-00004.safetensors",
607
+ "model.vision_tower.vision_tower.blocks.9.attn.out_proj.weight": "model-00004-of-00004.safetensors",
608
+ "model.vision_tower.vision_tower.blocks.9.attn.qkv.weight": "model-00004-of-00004.safetensors",
609
+ "model.vision_tower.vision_tower.blocks.9.mlp.linear1.bias": "model-00004-of-00004.safetensors",
610
+ "model.vision_tower.vision_tower.blocks.9.mlp.linear1.weight": "model-00004-of-00004.safetensors",
611
+ "model.vision_tower.vision_tower.blocks.9.mlp.linear2.bias": "model-00004-of-00004.safetensors",
612
+ "model.vision_tower.vision_tower.blocks.9.mlp.linear2.weight": "model-00004-of-00004.safetensors",
613
+ "model.vision_tower.vision_tower.blocks.9.norm1.bias": "model-00004-of-00004.safetensors",
614
+ "model.vision_tower.vision_tower.blocks.9.norm1.weight": "model-00004-of-00004.safetensors",
615
+ "model.vision_tower.vision_tower.blocks.9.norm2.bias": "model-00004-of-00004.safetensors",
616
+ "model.vision_tower.vision_tower.blocks.9.norm2.weight": "model-00004-of-00004.safetensors",
617
+ "model.vision_tower.vision_tower.cls_token": "model-00003-of-00004.safetensors",
618
+ "model.vision_tower.vision_tower.norm.bias": "model-00004-of-00004.safetensors",
619
+ "model.vision_tower.vision_tower.norm.weight": "model-00004-of-00004.safetensors",
620
+ "model.vision_tower.vision_tower.patch_embedding.patch_embeddings.1.bias": "model-00003-of-00004.safetensors",
621
+ "model.vision_tower.vision_tower.patch_embedding.patch_embeddings.1.weight": "model-00003-of-00004.safetensors",
622
+ "model.vision_tower.vision_tower.patch_embedding.position_embeddings": "model-00003-of-00004.safetensors"
623
+ }
624
+ }
modeling_m3d_lamed.py ADDED
@@ -0,0 +1,2104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import Union
3
+ from transformers import Phi3Config, Phi3Model, Phi3ForCausalLM
4
+ from transformers.modeling_outputs import CausalLMOutputWithPast
5
+ from transformers.generation.utils import GenerateOutput
6
+ from .configuration_m3d_lamed import LamedPhi3Config
7
+ from abc import ABC, abstractmethod
8
+ from torch import Tensor
9
+ import math
10
+ from typing import Any, Dict, List
11
+ import torch
12
+ import torch.nn as nn
13
+ from typing import Optional, Tuple, Type
14
+ from monai.networks.blocks import PatchEmbed
15
+ import numpy as np
16
+ import torch.nn.functional as F
17
+
18
+ from einops import rearrange
19
+ from einops.layers.torch import Rearrange
20
+ from collections.abc import Sequence
21
+ from monai.networks.blocks.patchembedding import PatchEmbeddingBlock
22
+ from monai.networks.blocks.transformerblock import TransformerBlock
23
+ from monai.networks.nets import ViT
24
+
25
+
26
+ class BinaryDiceLoss(nn.Module):
27
+ def __init__(self, smooth=1, p=2, reduction='mean'):
28
+ super(BinaryDiceLoss, self).__init__()
29
+ self.smooth = smooth
30
+ self.p = p
31
+ self.reduction = reduction
32
+
33
+ def forward(self, predict, target):
34
+ predict = torch.sigmoid(predict)
35
+ target_ = target.clone().float()
36
+ target_[target == -1] = 0
37
+ assert predict.shape[0] == target.shape[0], "predict & target batch size don't match\n" + str(predict.shape) + '\n' + str(target.shape[0])
38
+ predict = predict.contiguous().view(predict.shape[0], -1)
39
+ target_ = target_.contiguous().view(target_.shape[0], -1)
40
+
41
+ num = torch.sum(torch.mul(predict, target_), dim=1)
42
+ den = torch.sum(predict, dim=1) + torch.sum(target_, dim=1) + self.smooth
43
+
44
+ dice_score = 2*num / den
45
+ dice_loss = 1 - dice_score
46
+
47
+ # dice_loss_avg = dice_loss[target[:,0]!=-1].sum() / dice_loss[target[:,0]!=-1].shape[0]
48
+ dice_loss_avg = dice_loss.sum() / dice_loss.shape[0]
49
+
50
+ return dice_loss_avg
51
+
52
+ class BCELoss(nn.Module):
53
+ def __init__(self):
54
+ super(BCELoss, self).__init__()
55
+ self.criterion = nn.BCEWithLogitsLoss()
56
+
57
+ def forward(self, predict, target):
58
+ assert predict.shape == target.shape, 'predict & target shape do not match\n' + str(predict.shape) + '\n' + str(target.shape)
59
+ target_ = target.clone()
60
+ target_[target == -1] = 0
61
+
62
+ ce_loss = self.criterion(predict, target_.float())
63
+
64
+ return ce_loss
65
+
66
+
67
+
68
+ class LayerNorm2d(nn.Module):
69
+ def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
70
+ super().__init__()
71
+ self.weight = nn.Parameter(torch.ones(num_channels))
72
+ self.bias = nn.Parameter(torch.zeros(num_channels))
73
+ self.eps = eps
74
+
75
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
76
+ u = x.mean(1, keepdim=True)
77
+ s = (x - u).pow(2).mean(1, keepdim=True)
78
+ x = (x - u) / torch.sqrt(s + self.eps)
79
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
80
+ return x
81
+
82
+
83
+ class MLPBlock(nn.Module):
84
+ def __init__(
85
+ self,
86
+ embedding_dim: int,
87
+ mlp_dim: int,
88
+ act: Type[nn.Module] = nn.GELU,
89
+ ) -> None:
90
+ super().__init__()
91
+ self.lin1 = nn.Linear(embedding_dim, mlp_dim)
92
+ self.lin2 = nn.Linear(mlp_dim, embedding_dim)
93
+ self.act = act()
94
+
95
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
96
+ return self.lin2(self.act(self.lin1(x)))
97
+
98
+
99
+ class TwoWayTransformer(nn.Module):
100
+ def __init__(
101
+ self,
102
+ depth: int,
103
+ embedding_dim: int,
104
+ num_heads: int,
105
+ mlp_dim: int,
106
+ activation: Type[nn.Module] = nn.ReLU,
107
+ attention_downsample_rate: int = 2,
108
+ ) -> None:
109
+ """
110
+ A transformer decoder that attends to an input image using
111
+ queries whose positional embedding is supplied.
112
+
113
+ Args:
114
+ depth (int): number of layers in the transformer
115
+ embedding_dim (int): the channel dimension for the input embeddings
116
+ num_heads (int): the number of heads for multihead attention. Must
117
+ divide embedding_dim
118
+ mlp_dim (int): the channel dimension internal to the MLP block
119
+ activation (nn.Module): the activation to use in the MLP block
120
+ """
121
+ super().__init__()
122
+ self.depth = depth
123
+ self.embedding_dim = embedding_dim
124
+ self.num_heads = num_heads
125
+ self.mlp_dim = mlp_dim
126
+ self.layers = nn.ModuleList()
127
+
128
+ for i in range(depth):
129
+ self.layers.append(
130
+ TwoWayAttentionBlock(
131
+ embedding_dim=embedding_dim,
132
+ num_heads=num_heads,
133
+ mlp_dim=mlp_dim,
134
+ activation=activation,
135
+ attention_downsample_rate=attention_downsample_rate,
136
+ skip_first_layer_pe=(i == 0),
137
+ )
138
+ )
139
+
140
+ self.final_attn_token_to_image = Attention(
141
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
142
+ )
143
+ self.norm_final_attn = nn.LayerNorm(embedding_dim)
144
+
145
+ def forward(
146
+ self,
147
+ image_embedding: Tensor,
148
+ image_pe: Tensor,
149
+ point_embedding: Tensor,
150
+ ) -> Tuple[Tensor, Tensor]:
151
+ """
152
+ Args:
153
+ image_embedding (torch.Tensor): image to attend to. Should be shape
154
+ B x embedding_dim x h x w for any h and w.
155
+ image_pe (torch.Tensor): the positional encoding to add to the image. Must
156
+ have the same shape as image_embedding.
157
+ point_embedding (torch.Tensor): the embedding to add to the query points.
158
+ Must have shape B x N_points x embedding_dim for any N_points.
159
+
160
+ Returns:
161
+ torch.Tensor: the processed point_embedding
162
+ torch.Tensor: the processed image_embedding
163
+ """
164
+ # BxCxHxW -> BxHWxC == B x N_image_tokens x C
165
+ bs, c, h, w, d = image_embedding.shape
166
+ image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
167
+ image_pe = image_pe.flatten(2).permute(0, 2, 1)
168
+
169
+ # Prepare queries
170
+ queries = point_embedding
171
+ keys = image_embedding
172
+
173
+ # Apply transformer blocks and final layernorm
174
+ for layer in self.layers:
175
+ queries, keys = layer(
176
+ queries=queries,
177
+ keys=keys,
178
+ query_pe=point_embedding,
179
+ key_pe=image_pe,
180
+ )
181
+
182
+ # Apply the final attention layer from the points to the image
183
+ q = queries + point_embedding
184
+ k = keys + image_pe
185
+ attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
186
+ queries = queries + attn_out
187
+ queries = self.norm_final_attn(queries)
188
+
189
+ return queries, keys
190
+
191
+
192
+ class TwoWayAttentionBlock(nn.Module):
193
+ def __init__(
194
+ self,
195
+ embedding_dim: int,
196
+ num_heads: int,
197
+ mlp_dim: int = 2048,
198
+ activation: Type[nn.Module] = nn.ReLU,
199
+ attention_downsample_rate: int = 2,
200
+ skip_first_layer_pe: bool = False,
201
+ ) -> None:
202
+ """
203
+ A transformer block with four layers: (1) self-attention of sparse
204
+ inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
205
+ block on sparse inputs, and (4) cross attention of dense inputs to sparse
206
+ inputs.
207
+
208
+ Arguments:
209
+ embedding_dim (int): the channel dimension of the embeddings
210
+ num_heads (int): the number of heads in the attention layers
211
+ mlp_dim (int): the hidden dimension of the mlp block
212
+ activation (nn.Module): the activation of the mlp block
213
+ skip_first_layer_pe (bool): skip the PE on the first layer
214
+ """
215
+ super().__init__()
216
+ self.self_attn = Attention(embedding_dim, num_heads)
217
+ self.norm1 = nn.LayerNorm(embedding_dim)
218
+
219
+ self.cross_attn_token_to_image = Attention(
220
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
221
+ )
222
+ self.norm2 = nn.LayerNorm(embedding_dim)
223
+
224
+ self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
225
+ self.norm3 = nn.LayerNorm(embedding_dim)
226
+
227
+ self.norm4 = nn.LayerNorm(embedding_dim)
228
+ self.cross_attn_image_to_token = Attention(
229
+ embedding_dim, num_heads, downsample_rate=attention_downsample_rate
230
+ )
231
+
232
+ self.skip_first_layer_pe = skip_first_layer_pe
233
+
234
+ def forward(
235
+ self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
236
+ ) -> Tuple[Tensor, Tensor]:
237
+ # Self attention block
238
+ if self.skip_first_layer_pe:
239
+ queries = self.self_attn(q=queries, k=queries, v=queries)
240
+ else:
241
+ q = queries + query_pe
242
+ attn_out = self.self_attn(q=q, k=q, v=queries)
243
+ queries = queries + attn_out
244
+ queries = self.norm1(queries)
245
+
246
+ # Cross attention block, tokens attending to image embedding
247
+ q = queries + query_pe
248
+ k = keys + key_pe
249
+ attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
250
+ queries = queries + attn_out
251
+ queries = self.norm2(queries)
252
+
253
+ # MLP block
254
+ mlp_out = self.mlp(queries)
255
+ queries = queries + mlp_out
256
+ queries = self.norm3(queries)
257
+
258
+ # Cross attention block, image embedding attending to tokens
259
+ q = queries + query_pe
260
+ k = keys + key_pe
261
+ attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
262
+ keys = keys + attn_out
263
+ keys = self.norm4(keys)
264
+
265
+ return queries, keys
266
+
267
+
268
+ class Attention(nn.Module):
269
+ """
270
+ An attention layer that allows for downscaling the size of the embedding
271
+ after projection to queries, keys, and values.
272
+ """
273
+
274
+ def __init__(
275
+ self,
276
+ embedding_dim: int,
277
+ num_heads: int,
278
+ downsample_rate: int = 1,
279
+ ) -> None:
280
+ super().__init__()
281
+ self.embedding_dim = embedding_dim
282
+ self.internal_dim = embedding_dim // downsample_rate
283
+ self.num_heads = num_heads
284
+ assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
285
+
286
+ self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
287
+ self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
288
+ self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
289
+ self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
290
+
291
+ def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
292
+ b, n, c = x.shape
293
+ x = x.reshape(b, n, num_heads, c // num_heads)
294
+ return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
295
+
296
+ def _recombine_heads(self, x: Tensor) -> Tensor:
297
+ b, n_heads, n_tokens, c_per_head = x.shape
298
+ x = x.transpose(1, 2)
299
+ return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
300
+
301
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
302
+ # Input projections
303
+ q = self.q_proj(q)
304
+ k = self.k_proj(k)
305
+ v = self.v_proj(v)
306
+
307
+ # Separate into heads
308
+ q = self._separate_heads(q, self.num_heads)
309
+ k = self._separate_heads(k, self.num_heads)
310
+ v = self._separate_heads(v, self.num_heads)
311
+
312
+ # Attention
313
+ _, _, _, c_per_head = q.shape
314
+ attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
315
+ attn = attn / math.sqrt(c_per_head)
316
+ attn = torch.softmax(attn, dim=-1)
317
+
318
+ # Get output
319
+ out = attn @ v
320
+ out = self._recombine_heads(out)
321
+ out = self.out_proj(out)
322
+
323
+ return out
324
+
325
+
326
+
327
+ # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
328
+ class ImageEncoderViT(nn.Module):
329
+ def __init__(
330
+ self,
331
+ img_size: int = 1024,
332
+ patch_size: int = 16,
333
+ in_chans: int = 1,
334
+ embed_dim: int = 768,
335
+ depth: int = 12,
336
+ num_heads: int = 12,
337
+ mlp_ratio: float = 4.0,
338
+ out_chans: int = 256,
339
+ qkv_bias: bool = True,
340
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
341
+ act_layer: Type[nn.Module] = nn.GELU,
342
+ use_abs_pos: bool = True,
343
+ use_rel_pos: bool = False,
344
+ rel_pos_zero_init: bool = True,
345
+ window_size: int = 0,
346
+ global_attn_indexes: Tuple[int, ...] = (),
347
+ ) -> None:
348
+ """
349
+ Args:
350
+ img_size (int): Input image size.
351
+ patch_size (int): Patch size.
352
+ in_chans (int): Number of input image channels.
353
+ embed_dim (int): Patch embedding dimension.
354
+ depth (int): Depth of ViT.
355
+ num_heads (int): Number of attention heads in each ViT block.
356
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
357
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
358
+ norm_layer (nn.Module): Normalization layer.
359
+ act_layer (nn.Module): Activation layer.
360
+ use_abs_pos (bool): If True, use absolute positional embeddings.
361
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
362
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
363
+ window_size (int): Window size for window attention blocks.
364
+ global_attn_indexes (list): Indexes for blocks using global attention.
365
+ """
366
+ super().__init__()
367
+ self.img_size = img_size
368
+
369
+ # self.patch_embed = PatchEmbed(
370
+ # kernel_size=(patch_size, patch_size),
371
+ # stride=(patch_size, patch_size),
372
+ # in_chans=in_chans,
373
+ # embed_dim=embed_dim,
374
+ # )
375
+
376
+ self.patch_embed = PatchEmbed(
377
+ patch_size=patch_size,
378
+ in_chans=in_chans,
379
+ embed_dim=embed_dim,
380
+ spatial_dims=3,
381
+ )
382
+
383
+ self.pos_embed: Optional[nn.Parameter] = None
384
+ if use_abs_pos:
385
+ # Initialize absolute positional embedding with pretrain image size.
386
+ self.pos_embed = nn.Parameter(
387
+ torch.zeros(1, img_size // patch_size, img_size // patch_size, img_size // patch_size, embed_dim)
388
+ )
389
+
390
+ self.blocks = nn.ModuleList()
391
+ for i in range(depth):
392
+ block = Block(
393
+ dim=embed_dim,
394
+ num_heads=num_heads,
395
+ mlp_ratio=mlp_ratio,
396
+ qkv_bias=qkv_bias,
397
+ norm_layer=norm_layer,
398
+ act_layer=act_layer,
399
+ use_rel_pos=use_rel_pos,
400
+ rel_pos_zero_init=rel_pos_zero_init,
401
+ window_size=window_size if i not in global_attn_indexes else 0,
402
+ input_size=(img_size // patch_size, img_size // patch_size),
403
+ )
404
+ self.blocks.append(block)
405
+
406
+ self.neck = nn.Sequential(
407
+ nn.Conv2d(
408
+ embed_dim,
409
+ out_chans,
410
+ kernel_size=1,
411
+ bias=False,
412
+ ),
413
+ LayerNorm2d(out_chans),
414
+ nn.Conv2d(
415
+ out_chans,
416
+ out_chans,
417
+ kernel_size=3,
418
+ padding=1,
419
+ bias=False,
420
+ ),
421
+ LayerNorm2d(out_chans),
422
+ )
423
+
424
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
425
+ x = self.patch_embed(x)
426
+ print('patch embedded shape: ', x.shape) # embedded: [8, 768, 6, 6, 6]
427
+ if self.pos_embed is not None:
428
+ x = x + self.pos_embed
429
+
430
+ for blk in self.blocks:
431
+ x = blk(x)
432
+
433
+ x = self.neck(x.permute(0, 3, 1, 2))
434
+
435
+ return x
436
+
437
+
438
+ class Block(nn.Module):
439
+ """Transformer blocks with support of window attention and residual propagation blocks"""
440
+
441
+ def __init__(
442
+ self,
443
+ dim: int,
444
+ num_heads: int,
445
+ mlp_ratio: float = 4.0,
446
+ qkv_bias: bool = True,
447
+ norm_layer: Type[nn.Module] = nn.LayerNorm,
448
+ act_layer: Type[nn.Module] = nn.GELU,
449
+ use_rel_pos: bool = False,
450
+ rel_pos_zero_init: bool = True,
451
+ window_size: int = 0,
452
+ input_size: Optional[Tuple[int, int]] = None,
453
+ ) -> None:
454
+ """
455
+ Args:
456
+ dim (int): Number of input channels.
457
+ num_heads (int): Number of attention heads in each ViT block.
458
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
459
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
460
+ norm_layer (nn.Module): Normalization layer.
461
+ act_layer (nn.Module): Activation layer.
462
+ use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
463
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
464
+ window_size (int): Window size for window attention blocks. If it equals 0, then
465
+ use global attention.
466
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
467
+ positional parameter size.
468
+ """
469
+ super().__init__()
470
+ self.norm1 = norm_layer(dim)
471
+ self.attn = Attention2(
472
+ dim,
473
+ num_heads=num_heads,
474
+ qkv_bias=qkv_bias,
475
+ use_rel_pos=use_rel_pos,
476
+ rel_pos_zero_init=rel_pos_zero_init,
477
+ input_size=input_size if window_size == 0 else (window_size, window_size),
478
+ )
479
+
480
+ self.norm2 = norm_layer(dim)
481
+ self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
482
+
483
+ self.window_size = window_size
484
+
485
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
486
+ shortcut = x
487
+ x = self.norm1(x)
488
+ # Window partition
489
+ if self.window_size > 0:
490
+ H, W = x.shape[1], x.shape[2]
491
+ x, pad_hw = window_partition(x, self.window_size)
492
+
493
+ x = self.attn(x)
494
+ # Reverse window partition
495
+ if self.window_size > 0:
496
+ x = window_unpartition(x, self.window_size, pad_hw, (H, W))
497
+
498
+ x = shortcut + x
499
+ x = x + self.mlp(self.norm2(x))
500
+
501
+ return x
502
+
503
+
504
+ class Attention2(nn.Module):
505
+ """Multi-head Attention block with relative position embeddings."""
506
+
507
+ def __init__(
508
+ self,
509
+ dim: int,
510
+ num_heads: int = 8,
511
+ qkv_bias: bool = True,
512
+ use_rel_pos: bool = False,
513
+ rel_pos_zero_init: bool = True,
514
+ input_size: Optional[Tuple[int, int]] = None,
515
+ ) -> None:
516
+ """
517
+ Args:
518
+ dim (int): Number of input channels.
519
+ num_heads (int): Number of attention heads.
520
+ qkv_bias (bool): If True, add a learnable bias to query, key, value.
521
+ rel_pos (bool): If True, add relative positional embeddings to the attention map.
522
+ rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
523
+ input_size (tuple(int, int) or None): Input resolution for calculating the relative
524
+ positional parameter size.
525
+ """
526
+ super().__init__()
527
+ self.num_heads = num_heads
528
+ head_dim = dim // num_heads
529
+ self.scale = head_dim ** -0.5
530
+
531
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
532
+ self.proj = nn.Linear(dim, dim)
533
+
534
+ self.use_rel_pos = use_rel_pos
535
+ if self.use_rel_pos:
536
+ assert (
537
+ input_size is not None
538
+ ), "Input size must be provided if using relative positional encoding."
539
+ # initialize relative positional embeddings
540
+ self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
541
+ self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
542
+
543
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
544
+ B, H, W, _ = x.shape
545
+ # qkv with shape (3, B, nHead, H * W, C)
546
+ qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
547
+ # q, k, v with shape (B * nHead, H * W, C)
548
+ q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
549
+
550
+ attn = (q * self.scale) @ k.transpose(-2, -1)
551
+
552
+ if self.use_rel_pos:
553
+ attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
554
+
555
+ attn = attn.softmax(dim=-1)
556
+ x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
557
+ x = self.proj(x)
558
+
559
+ return x
560
+
561
+
562
+ def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
563
+ """
564
+ Partition into non-overlapping windows with padding if needed.
565
+ Args:
566
+ x (tensor): input tokens with [B, H, W, C].
567
+ window_size (int): window size.
568
+
569
+ Returns:
570
+ windows: windows after partition with [B * num_windows, window_size, window_size, C].
571
+ (Hp, Wp): padded height and width before partition
572
+ """
573
+ B, H, W, C = x.shape
574
+
575
+ pad_h = (window_size - H % window_size) % window_size
576
+ pad_w = (window_size - W % window_size) % window_size
577
+ if pad_h > 0 or pad_w > 0:
578
+ x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
579
+ Hp, Wp = H + pad_h, W + pad_w
580
+
581
+ x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
582
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
583
+ return windows, (Hp, Wp)
584
+
585
+
586
+ def window_unpartition(
587
+ windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
588
+ ) -> torch.Tensor:
589
+ """
590
+ Window unpartition into original sequences and removing padding.
591
+ Args:
592
+ windows (tensor): input tokens with [B * num_windows, window_size, window_size, C].
593
+ window_size (int): window size.
594
+ pad_hw (Tuple): padded height and width (Hp, Wp).
595
+ hw (Tuple): original height and width (H, W) before padding.
596
+
597
+ Returns:
598
+ x: unpartitioned sequences with [B, H, W, C].
599
+ """
600
+ Hp, Wp = pad_hw
601
+ H, W = hw
602
+ B = windows.shape[0] // (Hp * Wp // window_size // window_size)
603
+ x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
604
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
605
+
606
+ if Hp > H or Wp > W:
607
+ x = x[:, :H, :W, :].contiguous()
608
+ return x
609
+
610
+
611
+ def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
612
+ """
613
+ Get relative positional embeddings according to the relative positions of
614
+ query and key sizes.
615
+ Args:
616
+ q_size (int): size of query q.
617
+ k_size (int): size of key k.
618
+ rel_pos (Tensor): relative position embeddings (L, C).
619
+
620
+ Returns:
621
+ Extracted positional embeddings according to relative positions.
622
+ """
623
+ max_rel_dist = int(2 * max(q_size, k_size) - 1)
624
+ # Interpolate rel pos if needed.
625
+ if rel_pos.shape[0] != max_rel_dist:
626
+ # Interpolate rel pos.
627
+ rel_pos_resized = F.interpolate(
628
+ rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
629
+ size=max_rel_dist,
630
+ mode="linear",
631
+ )
632
+ rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
633
+ else:
634
+ rel_pos_resized = rel_pos
635
+
636
+ # Scale the coords with short length if shapes for q and k are different.
637
+ q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
638
+ k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
639
+ relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
640
+
641
+ return rel_pos_resized[relative_coords.long()]
642
+
643
+
644
+ def add_decomposed_rel_pos(
645
+ attn: torch.Tensor,
646
+ q: torch.Tensor,
647
+ rel_pos_h: torch.Tensor,
648
+ rel_pos_w: torch.Tensor,
649
+ q_size: Tuple[int, int],
650
+ k_size: Tuple[int, int],
651
+ ) -> torch.Tensor:
652
+ """
653
+ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
654
+ https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
655
+ Args:
656
+ attn (Tensor): attention map.
657
+ q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
658
+ rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
659
+ rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
660
+ q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
661
+ k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
662
+
663
+ Returns:
664
+ attn (Tensor): attention map with added relative positional embeddings.
665
+ """
666
+ q_h, q_w = q_size
667
+ k_h, k_w = k_size
668
+ Rh = get_rel_pos(q_h, k_h, rel_pos_h)
669
+ Rw = get_rel_pos(q_w, k_w, rel_pos_w)
670
+
671
+ B, _, dim = q.shape
672
+ r_q = q.reshape(B, q_h, q_w, dim)
673
+ rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
674
+ rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
675
+
676
+ attn = (
677
+ attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
678
+ ).view(B, q_h * q_w, k_h * k_w)
679
+
680
+ return attn
681
+
682
+
683
+ class PromptEncoder(nn.Module):
684
+ def __init__(
685
+ self,
686
+ embed_dim: int,
687
+ image_embedding_size: Tuple[int, int, int],
688
+ input_image_size: Tuple[int, int, int],
689
+ mask_in_chans: int,
690
+ activation: Type[nn.Module] = nn.GELU,
691
+ ) -> None:
692
+ """
693
+ Encodes prompts for input to SAM's mask decoder.
694
+
695
+ Arguments:
696
+ embed_dim (int): The prompts' embedding dimension
697
+ image_embedding_size (tuple(int, int)): The spatial size of the
698
+ image embedding, as (H, W).
699
+ input_image_size (int): The padded size of the image as input
700
+ to the image encoder, as (H, W).
701
+ mask_in_chans (int): The number of hidden channels used for
702
+ encoding input masks.
703
+ activation (nn.Module): The activation to use when encoding
704
+ input masks.
705
+ """
706
+ super().__init__()
707
+ self.embed_dim = embed_dim
708
+ self.input_image_size = input_image_size
709
+ self.image_embedding_size = image_embedding_size
710
+ self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
711
+
712
+ self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
713
+ point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
714
+ self.point_embeddings = nn.ModuleList(point_embeddings)
715
+ self.not_a_point_embed = nn.Embedding(1, embed_dim)
716
+
717
+ self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1], 4 * image_embedding_size[2])
718
+ self.mask_downscaling = nn.Sequential(
719
+ nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
720
+ LayerNorm2d(mask_in_chans // 4),
721
+ activation(),
722
+ nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
723
+ LayerNorm2d(mask_in_chans),
724
+ activation(),
725
+ nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
726
+ )
727
+ self.no_mask_embed = nn.Embedding(1, embed_dim)
728
+
729
+ def get_dense_pe(self) -> torch.Tensor:
730
+ """
731
+ Returns the positional encoding used to encode point prompts,
732
+ applied to a dense set of points the shape of the image encoding.
733
+
734
+ Returns:
735
+ torch.Tensor: Positional encoding with shape
736
+ 1x(embed_dim)x(embedding_h)x(embedding_w)
737
+ """
738
+ return self.pe_layer(self.image_embedding_size).unsqueeze(0)
739
+
740
+ def _embed_points(
741
+ self,
742
+ points: torch.Tensor,
743
+ labels: torch.Tensor,
744
+ pad: bool,
745
+ ) -> torch.Tensor:
746
+ """Embeds point prompts."""
747
+ points = points + 0.5 # Shift to center of pixel
748
+ if pad:
749
+ padding_point = torch.zeros((points.shape[0], 1, 3), device=points.device)
750
+ padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
751
+ points = torch.cat([points, padding_point], dim=1)
752
+ labels = torch.cat([labels, padding_label], dim=1)
753
+ point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
754
+ point_embedding[labels == -1] = 0.0
755
+ point_embedding[labels == -1] += self.not_a_point_embed.weight
756
+ point_embedding[labels == 0] += self.point_embeddings[0].weight
757
+ point_embedding[labels == 1] += self.point_embeddings[1].weight
758
+ return point_embedding
759
+
760
+ def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
761
+ """Embeds box prompts."""
762
+ boxes = boxes + 0.5 # Shift to center of pixel
763
+ coords = boxes.reshape(-1, 2, 3)
764
+ corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
765
+ corner_embedding[:, 0, :] += self.point_embeddings[2].weight
766
+ corner_embedding[:, 1, :] += self.point_embeddings[3].weight
767
+ return corner_embedding
768
+
769
+ def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
770
+ """Embeds mask inputs."""
771
+ mask_embedding = self.mask_downscaling(masks)
772
+ return mask_embedding
773
+
774
+ def _get_batch_size(
775
+ self,
776
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
777
+ boxes: Optional[torch.Tensor],
778
+ masks: Optional[torch.Tensor],
779
+ text_embedding: Optional[torch.Tensor],
780
+ ) -> int:
781
+ """
782
+ Gets the batch size of the output given the batch size of the input prompts.
783
+ """
784
+ if points is not None:
785
+ return points[0].shape[0]
786
+ elif boxes is not None:
787
+ return boxes.shape[0]
788
+ elif masks is not None:
789
+ return masks.shape[0]
790
+ elif text_embedding is not None:
791
+ return text_embedding.shape[0]
792
+ else:
793
+ return 1
794
+
795
+ def _get_device(self) -> torch.device:
796
+ return self.point_embeddings[0].weight.device
797
+
798
+ def forward(
799
+ self,
800
+ points: Optional[Tuple[torch.Tensor, torch.Tensor]],
801
+ boxes: Optional[torch.Tensor],
802
+ masks: Optional[torch.Tensor],
803
+ text_embedding: Optional[torch.Tensor],
804
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
805
+ """
806
+ Embeds different types of prompts, returning both sparse and dense
807
+ embeddings.
808
+
809
+ Arguments:
810
+ points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
811
+ and labels to embed.
812
+ boxes (torch.Tensor or none): boxes to embed
813
+ masks (torch.Tensor or none): masks to embed
814
+ text: test prompt (B, 768)
815
+
816
+ Returns:
817
+ torch.Tensor: sparse embeddings for the points and boxes, with shape
818
+ BxNx(embed_dim), where N is determined by the number of input points
819
+ and boxes.
820
+ torch.Tensor: dense embeddings for the masks, in the shape
821
+ Bx(embed_dim)x(embed_H)x(embed_W)
822
+ """
823
+ # print('prompt encoder here...')
824
+
825
+ bs = self._get_batch_size(points, boxes, masks, text_embedding)
826
+ sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device(),
827
+ dtype=self.point_embeddings[0].weight.dtype)
828
+ # print('sparse_embeddings ', sparse_embeddings.shape)
829
+ if points is not None:
830
+ coords, labels = points
831
+ point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
832
+ sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
833
+
834
+ if boxes is not None:
835
+ box_embeddings = self._embed_boxes(boxes)
836
+ sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
837
+
838
+ if text_embedding is not None:
839
+ sparse_embeddings = torch.cat([sparse_embeddings, text_embedding.unsqueeze(dim=1)], dim=1)
840
+
841
+ # print('box_embeddings ', box_embeddings.shape)
842
+ # print('sparse_embeddings after box/point/text', sparse_embeddings.shape)
843
+
844
+ if masks is not None:
845
+ dense_embeddings = self._embed_masks(masks)
846
+ else:
847
+ dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1, 1).expand(
848
+ bs, -1, int(self.image_embedding_size[0]), int(self.image_embedding_size[1]),
849
+ int(self.image_embedding_size[2])
850
+ )
851
+ return sparse_embeddings, dense_embeddings
852
+
853
+
854
+ class PositionEmbeddingRandom(nn.Module):
855
+ """
856
+ Positional encoding using random spatial frequencies.
857
+ """
858
+
859
+ def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
860
+ super().__init__()
861
+ if scale is None or scale <= 0.0:
862
+ scale = 1.0
863
+ self.register_buffer(
864
+ "positional_encoding_gaussian_matrix",
865
+ scale * torch.randn((3, num_pos_feats)),
866
+ )
867
+
868
+ def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
869
+ """Positionally encode points that are normalized to [0,1]."""
870
+ # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
871
+ coords = 2 * coords - 1
872
+ coords = coords @ self.positional_encoding_gaussian_matrix
873
+ coords = 2 * np.pi * coords
874
+ # outputs d_1 x ... x d_n x C shape
875
+ return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
876
+
877
+ def forward(self, size: Tuple[int, int, int]) -> torch.Tensor:
878
+ """Generate positional encoding for a grid of the specified size."""
879
+ h, w, d = size
880
+ device: Any = self.positional_encoding_gaussian_matrix.device
881
+ dtype = self.positional_encoding_gaussian_matrix.dtype
882
+ grid = torch.ones((h, w, d), device=device, dtype=dtype)
883
+ y_embed = grid.cumsum(dim=0) - 0.5
884
+ x_embed = grid.cumsum(dim=1) - 0.5
885
+ z_embed = grid.cumsum(dim=2) - 0.5
886
+ y_embed = y_embed / h
887
+ x_embed = x_embed / w
888
+ z_embed = z_embed / d
889
+
890
+ pe = self._pe_encoding(torch.stack([x_embed, y_embed, z_embed], dim=-1))
891
+ return pe.permute(3, 0, 1, 2) # C x H x W x D
892
+
893
+ def forward_with_coords(
894
+ self, coords_input: torch.Tensor, image_size: Tuple[int, int]
895
+ ) -> torch.Tensor:
896
+ """Positionally encode points that are not normalized to [0,1]."""
897
+ coords = coords_input.clone()
898
+ coords[:, :, 0] = coords[:, :, 0] / image_size[1]
899
+ coords[:, :, 1] = coords[:, :, 1] / image_size[0]
900
+ coords[:, :, 2] = coords[:, :, 2] / image_size[2]
901
+ return self._pe_encoding(coords.to(torch.float)) # B x N x C
902
+
903
+
904
+ class MaskDecoder(nn.Module):
905
+ def __init__(
906
+ self,
907
+ *,
908
+ image_encoder_type: str,
909
+ transformer_dim: int,
910
+ transformer: nn.Module,
911
+ num_multimask_outputs: int = 3,
912
+ activation: Type[nn.Module] = nn.GELU,
913
+ iou_head_depth: int = 3,
914
+ iou_head_hidden_dim: int = 256,
915
+ image_size,
916
+ patch_size,
917
+ ) -> None:
918
+ """
919
+ Predicts masks given an image and prompt embeddings, using a
920
+ transformer architecture.
921
+
922
+ Arguments:
923
+ transformer_dim (int): the channel dimension of the transformer
924
+ transformer (nn.Module): the transformer used to predict masks
925
+ num_multimask_outputs (int): the number of masks to predict
926
+ when disambiguating masks
927
+ activation (nn.Module): the type of activation to use when
928
+ upscaling masks
929
+ iou_head_depth (int): the depth of the MLP used to predict
930
+ mask quality
931
+ iou_head_hidden_dim (int): the hidden dimension of the MLP
932
+ used to predict mask quality
933
+ """
934
+ super().__init__()
935
+ self.transformer_dim = transformer_dim
936
+ self.transformer = transformer
937
+
938
+ self.num_multimask_outputs = num_multimask_outputs
939
+
940
+ self.iou_token = nn.Embedding(1, transformer_dim)
941
+ self.num_mask_tokens = num_multimask_outputs + 1
942
+ self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
943
+
944
+ if image_encoder_type == 'swin_vit':
945
+ self.feat_shape = image_size / patch_size
946
+ self.output_upscaling = nn.Sequential(
947
+ nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
948
+ nn.LayerNorm(
949
+ (transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),
950
+ # swin
951
+ activation(),
952
+ nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), # swin
953
+ # nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1), # vit
954
+ activation(),
955
+ )
956
+ else:
957
+ self.feat_shape = image_size / patch_size * 2
958
+ self.output_upscaling = nn.Sequential(
959
+ nn.ConvTranspose3d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
960
+ nn.LayerNorm(
961
+ (transformer_dim // 4, int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))),
962
+ # vit
963
+ activation(),
964
+ nn.ConvTranspose3d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
965
+ # nn.Conv3d(transformer_dim // 4, transformer_dim // 8, kernel_size=3, stride=1, padding=1),
966
+ activation(),
967
+ )
968
+ self.output_hypernetworks_mlps = nn.ModuleList(
969
+ [
970
+ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
971
+ for i in range(self.num_mask_tokens)
972
+ ]
973
+ )
974
+
975
+ self.iou_prediction_head = MLP(
976
+ transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
977
+ )
978
+
979
+ self.txt_align_upscaled_embedding = nn.Linear(768, 96)
980
+
981
+ def forward(
982
+ self,
983
+ image_embeddings: torch.Tensor,
984
+ text_embedding: Optional[torch.Tensor],
985
+ image_pe: torch.Tensor,
986
+ sparse_prompt_embeddings: torch.Tensor,
987
+ dense_prompt_embeddings: torch.Tensor,
988
+ multimask_output: bool,
989
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
990
+ """
991
+ Predict masks given image and prompt embeddings.
992
+
993
+ Arguments:
994
+ image_embeddings (torch.Tensor): the embeddings from the image encoder
995
+ image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
996
+ sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
997
+ dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
998
+ multimask_output (bool): Whether to return multiple masks or a single
999
+ mask.
1000
+
1001
+ Returns:
1002
+ torch.Tensor: batched predicted masks
1003
+ torch.Tensor: batched predictions of mask quality
1004
+ """
1005
+ # print('--------------decoder here--------------')
1006
+ masks, iou_pred = self.predict_masks(
1007
+ image_embeddings=image_embeddings,
1008
+ text_embedding=text_embedding,
1009
+ image_pe=image_pe,
1010
+ sparse_prompt_embeddings=sparse_prompt_embeddings,
1011
+ dense_prompt_embeddings=dense_prompt_embeddings,
1012
+ )
1013
+
1014
+ # Select the correct mask or masks for output
1015
+ if multimask_output:
1016
+ mask_slice = slice(1, None)
1017
+ else:
1018
+ mask_slice = slice(0, 1)
1019
+ masks = masks[:, mask_slice, :, :, :]
1020
+ iou_pred = iou_pred[:, mask_slice]
1021
+
1022
+ # Prepare output
1023
+ return masks, iou_pred
1024
+
1025
+ def predict_masks(
1026
+ self,
1027
+ image_embeddings: torch.Tensor,
1028
+ text_embedding: torch.Tensor,
1029
+ image_pe: torch.Tensor,
1030
+ sparse_prompt_embeddings: torch.Tensor,
1031
+ dense_prompt_embeddings: torch.Tensor,
1032
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
1033
+ """Predicts masks. See 'forward' for more details."""
1034
+ # Concatenate output tokens
1035
+ output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
1036
+ output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
1037
+ tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # [2, 7=(5+2), 256]
1038
+ # Expand per-image data in batch direction to be per-mask
1039
+ if image_embeddings.shape[0] != tokens.shape[0]:
1040
+ src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
1041
+ else:
1042
+ src = image_embeddings
1043
+
1044
+ src = src + dense_prompt_embeddings
1045
+ pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
1046
+ b, c, h, w, d = src.shape
1047
+
1048
+ # Run the transformer
1049
+ hs, src = self.transformer(src, pos_src, tokens)
1050
+ iou_token_out = hs[:, 0, :]
1051
+ mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]
1052
+
1053
+ # Upscale mask embeddings and predict masks using the mask tokens
1054
+ src = src.transpose(1, 2).view(b, c, h, w, d)
1055
+ # print('src ', src.shape) # vit:[B, 768, 12, 12, 6], swin: [B, 6, 6, 3]
1056
+ upscaled_embedding = self.output_upscaling(src)
1057
+ hyper_in_list: List[torch.Tensor] = []
1058
+ for i in range(self.num_mask_tokens):
1059
+ hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
1060
+ hyper_in = torch.stack(hyper_in_list, dim=1)
1061
+ b, c, h, w, d = upscaled_embedding.shape
1062
+ # print('hyper_in ', hyper_in.shape) # [2, 4, 96]
1063
+ # print('upscaled_embedding ', upscaled_embedding.shape) # [2, 96, 24, 24, 12]*
1064
+ masks = (hyper_in @ upscaled_embedding.view(b, c, h * w * d)).view(b, -1, h, w, d)
1065
+ # print('masks here ', masks.shape) # [2, 4, 24, 24, 12]
1066
+
1067
+ if text_embedding is not None:
1068
+ # text_embedding: B x 768, upscaled_embedding: B x c x h x w x d => B x 1 x h x w x d
1069
+ text_embedding_down = self.txt_align_upscaled_embedding(text_embedding).unsqueeze(dim=1)
1070
+ upscaled_embedding = upscaled_embedding.view(b, c, h * w * d)
1071
+ # print('text_embedding_down ', text_embedding_down.shape) # [2, 1, 96]
1072
+ # text_embedding_norm = F.normalize(text_embedding_down, dim=-1)
1073
+ # upscaled_embedding_norm = F.normalize(upscaled_embedding, dim=1)
1074
+ # sim = (text_embedding_norm @ upscaled_embedding_norm).view(b, -1, h, w, d)
1075
+ # print(text_embedding_down.shape, upscaled_embedding.shape)
1076
+ sim = (text_embedding_down @ upscaled_embedding).view(b, -1, h, w, d)
1077
+ # print('sim ', sim.shape) # [B, 1, 24, 24, 12]
1078
+ sim = sim.repeat(1, masks.shape[1], 1, 1, 1)
1079
+ # print('sim after', sim.shape) # [B, 4, 24, 24, 12]
1080
+ masks = masks + sim
1081
+ # Generate mask quality predictions
1082
+ iou_pred = self.iou_prediction_head(iou_token_out)
1083
+
1084
+ return masks, iou_pred
1085
+
1086
+
1087
+ # Lightly adapted from
1088
+ # https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
1089
+ class MLP(nn.Module):
1090
+ def __init__(
1091
+ self,
1092
+ input_dim: int,
1093
+ hidden_dim: int,
1094
+ output_dim: int,
1095
+ num_layers: int,
1096
+ sigmoid_output: bool = False,
1097
+ ) -> None:
1098
+ super().__init__()
1099
+ self.num_layers = num_layers
1100
+ h = [hidden_dim] * (num_layers - 1)
1101
+ self.layers = nn.ModuleList(
1102
+ nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
1103
+ )
1104
+ self.sigmoid_output = sigmoid_output
1105
+
1106
+ def forward(self, x):
1107
+ for i, layer in enumerate(self.layers):
1108
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
1109
+ if self.sigmoid_output:
1110
+ x = F.sigmoid(x)
1111
+ return x
1112
+
1113
+
1114
+ class Sam(nn.Module):
1115
+ mask_threshold: float = 0.0
1116
+ image_format: str = "RGB"
1117
+
1118
+ def __init__(
1119
+ self,
1120
+ image_encoder: ImageEncoderViT,
1121
+ prompt_encoder: PromptEncoder,
1122
+ mask_decoder: MaskDecoder,
1123
+ pixel_mean: List[float] = [123.675, 116.28, 103.53],
1124
+ pixel_std: List[float] = [58.395, 57.12, 57.375],
1125
+ ) -> None:
1126
+ """
1127
+ SAM predicts object masks from an image and input prompts.
1128
+
1129
+ Arguments:
1130
+ image_encoder (ImageEncoderViT): The backbone used to encode the
1131
+ image into image embeddings that allow for efficient mask prediction.
1132
+ prompt_encoder (PromptEncoder): Encodes various types of input prompts.
1133
+ mask_decoder (MaskDecoder): Predicts masks from the image embeddings
1134
+ and encoded prompts.
1135
+ pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
1136
+ pixel_std (list(float)): Std values for normalizing pixels in the input image.
1137
+ """
1138
+ super().__init__()
1139
+ self.image_encoder = image_encoder
1140
+ self.prompt_encoder = prompt_encoder
1141
+ self.mask_decoder = mask_decoder
1142
+ self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
1143
+ self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
1144
+
1145
+ @property
1146
+ def device(self) -> Any:
1147
+ return self.pixel_mean.device
1148
+
1149
+ @torch.no_grad()
1150
+ def forward(
1151
+ self,
1152
+ batched_input: List[Dict[str, Any]],
1153
+ multimask_output: bool,
1154
+ ) -> List[Dict[str, torch.Tensor]]:
1155
+ """
1156
+ Predicts masks end-to-end from provided images and prompts.
1157
+ If prompts are not known in advance, using SamPredictor is
1158
+ recommended over calling the model directly.
1159
+
1160
+ Arguments:
1161
+ batched_input (list(dict)): A list over input images, each a
1162
+ dictionary with the following keys. A prompt key can be
1163
+ excluded if it is not present.
1164
+ 'image': The image as a torch tensor in 3xHxW format,
1165
+ already transformed for input to the model.
1166
+ 'original_size': (tuple(int, int)) The original size of
1167
+ the image before transformation, as (H, W).
1168
+ 'point_coords': (torch.Tensor) Batched point prompts for
1169
+ this image, with shape BxNx2. Already transformed to the
1170
+ input frame of the model.
1171
+ 'point_labels': (torch.Tensor) Batched labels for point prompts,
1172
+ with shape BxN.
1173
+ 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
1174
+ Already transformed to the input frame of the model.
1175
+ 'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
1176
+ in the form Bx1xHxW.
1177
+ multimask_output (bool): Whether the model should predict multiple
1178
+ disambiguating masks, or return a single mask.
1179
+
1180
+ Returns:
1181
+ (list(dict)): A list over input images, where each element is
1182
+ as dictionary with the following keys.
1183
+ 'masks': (torch.Tensor) Batched binary mask predictions,
1184
+ with shape BxCxHxW, where B is the number of input prompts,
1185
+ C is determined by multimask_output, and (H, W) is the
1186
+ original size of the image.
1187
+ 'iou_predictions': (torch.Tensor) The model's predictions
1188
+ of mask quality, in shape BxC.
1189
+ 'low_res_logits': (torch.Tensor) Low resolution logits with
1190
+ shape BxCxHxW, where H=W=256. Can be passed as mask input
1191
+ to subsequent iterations of prediction.
1192
+ """
1193
+ input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
1194
+ image_embeddings = self.image_encoder(input_images)
1195
+
1196
+ outputs = []
1197
+ for image_record, curr_embedding in zip(batched_input, image_embeddings):
1198
+ if "point_coords" in image_record:
1199
+ points = (image_record["point_coords"], image_record["point_labels"])
1200
+ else:
1201
+ points = None
1202
+ sparse_embeddings, dense_embeddings = self.prompt_encoder(
1203
+ points=points,
1204
+ boxes=image_record.get("boxes", None),
1205
+ masks=image_record.get("mask_inputs", None),
1206
+ )
1207
+ low_res_masks, iou_predictions = self.mask_decoder(
1208
+ image_embeddings=curr_embedding.unsqueeze(0),
1209
+ image_pe=self.prompt_encoder.get_dense_pe(),
1210
+ sparse_prompt_embeddings=sparse_embeddings,
1211
+ dense_prompt_embeddings=dense_embeddings,
1212
+ multimask_output=multimask_output,
1213
+ )
1214
+ masks = self.postprocess_masks(
1215
+ low_res_masks,
1216
+ input_size=image_record["image"].shape[-2:],
1217
+ original_size=image_record["original_size"],
1218
+ )
1219
+ masks = masks > self.mask_threshold
1220
+ outputs.append(
1221
+ {
1222
+ "masks": masks,
1223
+ "iou_predictions": iou_predictions,
1224
+ "low_res_logits": low_res_masks,
1225
+ }
1226
+ )
1227
+ return outputs
1228
+
1229
+ def postprocess_masks(
1230
+ self,
1231
+ masks: torch.Tensor,
1232
+ input_size: Tuple[int, ...],
1233
+ original_size: Tuple[int, ...],
1234
+ ) -> torch.Tensor:
1235
+ """
1236
+ Remove padding and upscale masks to the original image size.
1237
+
1238
+ Arguments:
1239
+ masks (torch.Tensor): Batched masks from the mask_decoder,
1240
+ in BxCxHxW format.
1241
+ input_size (tuple(int, int)): The size of the image input to the
1242
+ model, in (H, W) format. Used to remove padding.
1243
+ original_size (tuple(int, int)): The original size of the image
1244
+ before resizing for input to the model, in (H, W) format.
1245
+
1246
+ Returns:
1247
+ (torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
1248
+ is given by original_size.
1249
+ """
1250
+ masks = F.interpolate(
1251
+ masks,
1252
+ (self.image_encoder.img_size, self.image_encoder.img_size),
1253
+ mode="bilinear",
1254
+ align_corners=False,
1255
+ )
1256
+ masks = masks[..., : input_size[0], : input_size[1]]
1257
+ masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
1258
+ return masks
1259
+
1260
+ def preprocess(self, x: torch.Tensor) -> torch.Tensor:
1261
+ """Normalize pixel values and pad to a square input."""
1262
+ # Normalize colors
1263
+ # TODO
1264
+ x = (x - self.pixel_mean) / self.pixel_std
1265
+
1266
+ # Pad
1267
+ h, w = x.shape[-2:]
1268
+ padh = self.image_encoder.img_size - h
1269
+ padw = self.image_encoder.img_size - w
1270
+ x = F.pad(x, (0, padw, 0, padh))
1271
+ return x
1272
+
1273
+
1274
+ """
1275
+ Examples::
1276
+ # for 3D single channel input with size (96,96,96), 4-channel output and feature size of 48.
1277
+ >>> net = SwinUNETR(img_size=(96,96,96), in_channels=1, out_channels=4, feature_size=48)
1278
+ # for 3D 4-channel input with size (128,128,128), 3-channel output and (2,4,2,2) layers in each stage.
1279
+ >>> net = SwinUNETR(img_size=(128,128,128), in_channels=4, out_channels=3, depths=(2,4,2,2))
1280
+ # for 2D single channel input with size (96,96), 2-channel output and gradient checkpointing.
1281
+ >>> net = SwinUNETR(img_size=(96,96), in_channels=3, out_channels=2, use_checkpoint=True, spatial_dims=2)
1282
+ """
1283
+
1284
+
1285
+ def build_sam_vit_3d(args, checkpoint=None):
1286
+ print('build_sam_vit_3d...')
1287
+ return _build_sam(
1288
+ image_encoder_type='vit',
1289
+ embed_dim=768,
1290
+ patch_size=args.patch_size,
1291
+ checkpoint=checkpoint,
1292
+ image_size=args.image_size,
1293
+ )
1294
+
1295
+
1296
+ sam_model_registry = {
1297
+ "vit": build_sam_vit_3d,
1298
+ }
1299
+
1300
+
1301
+ def _build_sam(
1302
+ image_encoder_type,
1303
+ embed_dim,
1304
+ patch_size,
1305
+ checkpoint,
1306
+ image_size,
1307
+ ):
1308
+ mlp_dim = 3072
1309
+ num_layers = 12
1310
+ num_heads = 12
1311
+ pos_embed = 'perceptron'
1312
+ dropout_rate = 0.0
1313
+
1314
+ image_encoder = ViT(
1315
+ in_channels=1,
1316
+ img_size=image_size,
1317
+ patch_size=patch_size,
1318
+ hidden_size=embed_dim,
1319
+ mlp_dim=mlp_dim,
1320
+ num_layers=num_layers,
1321
+ num_heads=num_heads,
1322
+ pos_embed=pos_embed,
1323
+ classification=False,
1324
+ dropout_rate=dropout_rate,
1325
+ )
1326
+ image_embedding_size = [int(item) for item in (np.array(image_size) / np.array(patch_size))]
1327
+
1328
+ if checkpoint is not None:
1329
+ with open(checkpoint, "rb") as f:
1330
+ state_dict = torch.load(f, map_location='cpu')['state_dict']
1331
+ encoder_dict = {k.replace('model.encoder.', ''): v for k, v in state_dict.items() if 'model.encoder.' in k}
1332
+ image_encoder.load_state_dict(encoder_dict)
1333
+ print(f'===> image_encoder.load_param: {checkpoint}')
1334
+ sam = Sam(
1335
+ image_encoder=image_encoder,
1336
+ prompt_encoder=PromptEncoder(
1337
+ embed_dim=embed_dim,
1338
+ image_embedding_size=image_embedding_size,
1339
+ input_image_size=image_size,
1340
+ mask_in_chans=16,
1341
+ ),
1342
+ mask_decoder=MaskDecoder(
1343
+ image_encoder_type=image_encoder_type,
1344
+ num_multimask_outputs=3,
1345
+ transformer=TwoWayTransformer(
1346
+ depth=2,
1347
+ embedding_dim=embed_dim,
1348
+ mlp_dim=2048,
1349
+ num_heads=8,
1350
+ ),
1351
+ transformer_dim=embed_dim,
1352
+ iou_head_depth=3,
1353
+ iou_head_hidden_dim=256,
1354
+ image_size=np.array(image_size),
1355
+ patch_size=np.array(patch_size),
1356
+ ),
1357
+ pixel_mean=[123.675, 116.28, 103.53],
1358
+ pixel_std=[58.395, 57.12, 57.375],
1359
+ )
1360
+ sam.eval()
1361
+ return sam
1362
+
1363
+ class SegVol(nn.Module):
1364
+ def __init__(self,
1365
+ image_encoder,
1366
+ mask_decoder,
1367
+ prompt_encoder,
1368
+ roi_size,
1369
+ patch_size,
1370
+ ):
1371
+ super().__init__()
1372
+ self.image_encoder = image_encoder
1373
+ self.mask_decoder = mask_decoder
1374
+ self.prompt_encoder = prompt_encoder
1375
+ self.feat_shape = np.array(roi_size)/np.array(patch_size)
1376
+
1377
+ def forward(self, image, text_emb=None, text=None, boxes=None, points=None):
1378
+ bs = image.shape[0]
1379
+ img_shape = (image.shape[2], image.shape[3], image.shape[4])
1380
+ image_embedding, _ = self.image_encoder(image)
1381
+
1382
+ image_embedding = image_embedding.transpose(1, 2).view(bs, -1,
1383
+ int(self.feat_shape[0]), int(self.feat_shape[1]), int(self.feat_shape[2]))
1384
+
1385
+ logits = self.forward_decoder(image_embedding, img_shape, text_emb=text_emb, text=text, boxes=boxes, points=points)
1386
+
1387
+ return logits
1388
+
1389
+ def forward_decoder(self, image_embedding, img_shape, text_emb=None, text=None, boxes=None, points=None):
1390
+ text_embedding = text_emb
1391
+ sparse_embeddings, dense_embeddings = self.prompt_encoder(
1392
+ points=None,
1393
+ boxes=None,
1394
+ masks=None,
1395
+ text_embedding=text_embedding,
1396
+ )
1397
+
1398
+ dense_pe = self.prompt_encoder.get_dense_pe()
1399
+
1400
+ low_res_masks, _ = self.mask_decoder(
1401
+ image_embeddings=image_embedding,
1402
+ text_embedding = text_embedding,
1403
+ image_pe=dense_pe,
1404
+ sparse_prompt_embeddings=sparse_embeddings,
1405
+ dense_prompt_embeddings=dense_embeddings,
1406
+ multimask_output=False,
1407
+ )
1408
+ logits = F.interpolate(low_res_masks, size=img_shape, mode='trilinear', align_corners=False)
1409
+
1410
+ return logits
1411
+
1412
+
1413
+ def build_segmentation_module(config, **kwargs):
1414
+ segmentation_module = getattr(config, 'segmentation_module')
1415
+ if 'segvol' in segmentation_module.lower():
1416
+ sam_model = sam_model_registry['vit'](args=config, checkpoint=None)
1417
+ seg_model = SegVol(
1418
+ image_encoder=sam_model.image_encoder,
1419
+ mask_decoder=sam_model.mask_decoder,
1420
+ prompt_encoder=sam_model.prompt_encoder,
1421
+ roi_size=config.image_size,
1422
+ patch_size=config.patch_size,
1423
+ )
1424
+ return seg_model
1425
+ else:
1426
+ raise ValueError(f'Unknown segmentation module: {segmentation_module}')
1427
+
1428
+
1429
+ class IdentityMap(nn.Module):
1430
+ def __init__(self):
1431
+ super().__init__()
1432
+
1433
+ def forward(self, x, *args, **kwargs):
1434
+ return x
1435
+
1436
+ @property
1437
+ def config(self):
1438
+ return {"mm_projector_type": 'identity'}
1439
+
1440
+
1441
+
1442
+ class SpatialPoolingProjector(nn.Module):
1443
+ def __init__(self, image_size, patch_size, in_dim, out_dim, layer_type, layer_num, pooling_type='spatial', pooling_size=2):
1444
+ super().__init__()
1445
+ self.in_dim = in_dim
1446
+ self.pooling_size = pooling_size
1447
+
1448
+ self.num_patches_pre = [img // pch for img, pch in zip(image_size, patch_size)]
1449
+ self.num_patches_post = [num // pooling_size for num in self.num_patches_pre]
1450
+
1451
+ if layer_type == 'linear':
1452
+ depth = int(layer_num)
1453
+ modules = [nn.Linear(in_dim, out_dim)]
1454
+ for _ in range(1, depth):
1455
+ modules.append(nn.Linear(out_dim, out_dim))
1456
+ self.projector = nn.Sequential(*modules)
1457
+ elif layer_type == 'mlp':
1458
+ depth = int(layer_num)
1459
+ modules = [nn.Linear(in_dim, out_dim)]
1460
+ for _ in range(1, depth):
1461
+ modules.append(nn.GELU())
1462
+ modules.append(nn.Linear(out_dim, out_dim))
1463
+ self.projector = nn.Sequential(*modules)
1464
+ else:
1465
+ print("Projector error!")
1466
+
1467
+ self.pooling_type = pooling_type
1468
+
1469
+ def forward(self, x):
1470
+ B = x.shape[0] # B*N*D
1471
+
1472
+ if self.pooling_type == 'spatial':
1473
+ to_3d = Rearrange("b (p1 p2 p3) d -> b d p1 p2 p3", b=B, d=self.in_dim, p1=self.num_patches_pre[0], p2=self.num_patches_pre[1], p3=self.num_patches_pre[2])
1474
+ x = to_3d(x)
1475
+ x = F.avg_pool3d(x, kernel_size=self.pooling_size, stride=self.pooling_size)
1476
+ to_seq = Rearrange("b d p1 p2 p3 -> b (p1 p2 p3) d", b=B, d=self.in_dim, p1=self.num_patches_post[0], p2=self.num_patches_post[1], p3=self.num_patches_post[2])
1477
+ x = to_seq(x)
1478
+ elif self.pooling_type == 'sequence':
1479
+ x = x.permute(0, 2, 1) #b d n
1480
+ x = F.avg_pool1d(x, kernel_size=self.pooling_size**3, stride=self.pooling_size**3)
1481
+ x = x.permute(0, 2, 1) #b n d
1482
+
1483
+ x = rearrange(x, "b n d -> (b n) d")
1484
+ x = self.projector(x)
1485
+ x = rearrange(x, "(b n) d -> b n d", b=B)
1486
+
1487
+ return x
1488
+
1489
+ @property
1490
+ def proj_out_num(self):
1491
+ num = 1
1492
+ for n in self.num_patches_post:
1493
+ num *= n
1494
+ return num
1495
+
1496
+
1497
+ class Minigpt(nn.Module):
1498
+ def __init__(self, config=None):
1499
+ super(Minigpt, self).__init__()
1500
+ # c*4 is the input size, and c is the output size for the linear layer
1501
+ inc, ouc = config.mm_hidden_size, config.hidden_size
1502
+ self.linear = nn.Linear(inc * 4, ouc)
1503
+
1504
+ def forward(self, x):
1505
+ # x is the input tensor with shape [b, num_tokens, c]
1506
+ b, num_tokens, c = x.shape
1507
+
1508
+ # Check if num_tokens is divisible by 4
1509
+ if num_tokens % 4 != 0:
1510
+ raise ValueError("num_tokens must be divisible by 4")
1511
+
1512
+ # Reshape x to [b, num_tokens/4, c*4]
1513
+ x = x.view(b, num_tokens // 4, c * 4)
1514
+
1515
+ # Apply the linear transformation
1516
+ x = self.linear(x)
1517
+ return x
1518
+
1519
+
1520
+ class Vanilla(nn.Module):
1521
+ def __init__(self, config=None):
1522
+ super(Vanilla, self).__init__()
1523
+ # c*4 is the input size, and c is the output size for the linear layer
1524
+ inc, ouc = config.mm_hidden_size, config.hidden_size
1525
+ self.linear = nn.Linear(inc * 4, ouc)
1526
+
1527
+ def forward(self, x):
1528
+ b, num_tokens, c = x.shape
1529
+
1530
+ # Check if num_tokens is divisible by 4
1531
+ if num_tokens % 4 != 0:
1532
+ raise ValueError("num_tokens must be divisible by 4")
1533
+
1534
+ # First, reshape to [b, num_tokens//4, 4, c]
1535
+ x = x.view(b, num_tokens // 4, 4, c)
1536
+
1537
+ # Then, permute to interleave the tokens
1538
+ x = x.permute(0, 1, 3, 2).contiguous()
1539
+
1540
+ # Finally, reshape to [b, num_tokens//4, c*4] to interleave features of 4 tokens
1541
+ x = x.view(b, num_tokens // 4, c * 4)
1542
+
1543
+ # Apply the linear transformation
1544
+ x = self.linear(x)
1545
+ return x
1546
+
1547
+
1548
+ def build_mm_projector(config, delay_load=False, **kwargs):
1549
+ projector_type = getattr(config, 'mm_projector_type')
1550
+
1551
+ if projector_type == 'linear':
1552
+ return nn.Linear(config.mm_hidden_size, config.hidden_size)
1553
+
1554
+
1555
+ elif projector_type == 'spp':
1556
+ return SpatialPoolingProjector(image_size=config.image_size,
1557
+ patch_size=config.patch_size,
1558
+ in_dim=config.mm_hidden_size,
1559
+ out_dim=config.hidden_size,
1560
+ layer_type=config.proj_layer_type,
1561
+ layer_num=config.proj_layer_num,
1562
+ pooling_type=config.proj_pooling_type,
1563
+ pooling_size=config.proj_pooling_size)
1564
+
1565
+
1566
+ elif projector_type == 'identity':
1567
+ return IdentityMap()
1568
+ else:
1569
+ raise ValueError(f'Unknown projector type: {projector_type}')
1570
+
1571
+
1572
+
1573
+ class myViT(nn.Module):
1574
+ """
1575
+ Vision Transformer (ViT), based on: "Dosovitskiy et al.,
1576
+ An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale <https://arxiv.org/abs/2010.11929>"
1577
+
1578
+ ViT supports Torchscript but only works for Pytorch after 1.8.
1579
+ """
1580
+
1581
+ def __init__(
1582
+ self,
1583
+ in_channels: int,
1584
+ img_size: Sequence[int] | int,
1585
+ patch_size: Sequence[int] | int,
1586
+ hidden_size: int = 768,
1587
+ mlp_dim: int = 3072,
1588
+ num_layers: int = 12,
1589
+ num_heads: int = 12,
1590
+ pos_embed: str = "conv",
1591
+ classification: bool = False,
1592
+ num_classes: int = 2,
1593
+ dropout_rate: float = 0.0,
1594
+ spatial_dims: int = 3,
1595
+ post_activation="Tanh",
1596
+ qkv_bias: bool = False,
1597
+ save_attn: bool = False,
1598
+ ) -> None:
1599
+ """
1600
+ Args:
1601
+ in_channels (int): dimension of input channels.
1602
+ img_size (Union[Sequence[int], int]): dimension of input image.
1603
+ patch_size (Union[Sequence[int], int]): dimension of patch size.
1604
+ hidden_size (int, optional): dimension of hidden layer. Defaults to 768.
1605
+ mlp_dim (int, optional): dimension of feedforward layer. Defaults to 3072.
1606
+ num_layers (int, optional): number of transformer blocks. Defaults to 12.
1607
+ num_heads (int, optional): number of attention heads. Defaults to 12.
1608
+ pos_embed (str, optional): position embedding layer type. Defaults to "conv".
1609
+ classification (bool, optional): bool argument to determine if classification is used. Defaults to False.
1610
+ num_classes (int, optional): number of classes if classification is used. Defaults to 2.
1611
+ dropout_rate (float, optional): faction of the input units to drop. Defaults to 0.0.
1612
+ spatial_dims (int, optional): number of spatial dimensions. Defaults to 3.
1613
+ post_activation (str, optional): add a final acivation function to the classification head
1614
+ when `classification` is True. Default to "Tanh" for `nn.Tanh()`.
1615
+ Set to other values to remove this function.
1616
+ qkv_bias (bool, optional): apply bias to the qkv linear layer in self attention block. Defaults to False.
1617
+ save_attn (bool, optional): to make accessible the attention in self attention block. Defaults to False.
1618
+
1619
+ Examples::
1620
+
1621
+ # for single channel input with image size of (96,96,96), conv position embedding and segmentation backbone
1622
+ >>> net = ViT(in_channels=1, img_size=(96,96,96), pos_embed='conv')
1623
+
1624
+ # for 3-channel with image size of (128,128,128), 24 layers and classification backbone
1625
+ >>> net = ViT(in_channels=3, img_size=(128,128,128), pos_embed='conv', classification=True)
1626
+
1627
+ # for 3-channel with image size of (224,224), 12 layers and classification backbone
1628
+ >>> net = ViT(in_channels=3, img_size=(224,224), pos_embed='conv', classification=True, spatial_dims=2)
1629
+
1630
+ """
1631
+
1632
+ super().__init__()
1633
+
1634
+ if not (0 <= dropout_rate <= 1):
1635
+ raise ValueError("dropout_rate should be between 0 and 1.")
1636
+
1637
+ if hidden_size % num_heads != 0:
1638
+ raise ValueError("hidden_size should be divisible by num_heads.")
1639
+ self.hidden_size = hidden_size
1640
+ self.classification = classification
1641
+ self.patch_embedding = PatchEmbeddingBlock(
1642
+ in_channels=in_channels,
1643
+ img_size=img_size,
1644
+ patch_size=patch_size,
1645
+ hidden_size=hidden_size,
1646
+ num_heads=num_heads,
1647
+ pos_embed=pos_embed,
1648
+ dropout_rate=dropout_rate,
1649
+ spatial_dims=spatial_dims,
1650
+ )
1651
+ self.blocks = nn.ModuleList(
1652
+ [
1653
+ TransformerBlock(hidden_size, mlp_dim, num_heads, dropout_rate, qkv_bias, save_attn)
1654
+ for i in range(num_layers)
1655
+ ]
1656
+ )
1657
+ self.norm = nn.LayerNorm(hidden_size)
1658
+ if self.classification:
1659
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, hidden_size))
1660
+ # if post_activation == "Tanh":
1661
+ # self.classification_head = nn.Sequential(nn.Linear(hidden_size, num_classes), nn.Tanh())
1662
+ # else:
1663
+ # self.classification_head = nn.Linear(hidden_size, num_classes) # type: ignore
1664
+
1665
+ def forward(self, x):
1666
+ x = self.patch_embedding(x)
1667
+ if hasattr(self, "cls_token"):
1668
+ cls_token = self.cls_token.expand(x.shape[0], -1, -1)
1669
+ x = torch.cat((cls_token, x), dim=1)
1670
+ hidden_states_out = []
1671
+ for blk in self.blocks:
1672
+ x = blk(x)
1673
+ hidden_states_out.append(x)
1674
+ x = self.norm(x)
1675
+ # if hasattr(self, "classification_head"):
1676
+ # x = self.classification_head(x[:, 0])
1677
+ return x, hidden_states_out
1678
+
1679
+
1680
+ class ViT3DTower(nn.Module):
1681
+ def __init__(self, config):
1682
+ super().__init__()
1683
+ self.config = config
1684
+ self.select_layer = config.vision_select_layer
1685
+ self.select_feature = config.vision_select_feature
1686
+
1687
+ self.vision_tower = myViT(
1688
+ in_channels=self.config.image_channel,
1689
+ img_size=self.config.image_size,
1690
+ patch_size=self.config.patch_size,
1691
+ pos_embed="perceptron",
1692
+ spatial_dims=len(self.config.patch_size),
1693
+ classification=True,
1694
+ )
1695
+
1696
+ def forward(self, images):
1697
+ last_feature, hidden_states = self.vision_tower(images)
1698
+ if self.select_layer == -1:
1699
+ image_features = last_feature
1700
+ elif self.select_layer < -1:
1701
+ image_features = hidden_states[self.select_feature]
1702
+ else:
1703
+ raise ValueError(f'Unexpected select layer: {self.select_layer}')
1704
+
1705
+ if self.select_feature == 'patch':
1706
+ image_features = image_features[:, 1:]
1707
+ elif self.select_feature == 'cls_patch':
1708
+ image_features = image_features
1709
+ else:
1710
+ raise ValueError(f'Unexpected select feature: {self.select_feature}')
1711
+
1712
+ return image_features
1713
+
1714
+ @property
1715
+ def dtype(self):
1716
+ return self.vision_tower.dtype
1717
+
1718
+ @property
1719
+ def device(self):
1720
+ return self.vision_tower.device
1721
+
1722
+ @property
1723
+ def hidden_size(self):
1724
+ return self.vision_tower.hidden_size
1725
+
1726
+
1727
+ def build_vision_tower(config, **kwargs):
1728
+ vision_tower = getattr(config, 'vision_tower', None)
1729
+ if 'vit3d' in vision_tower.lower():
1730
+ return ViT3DTower(config, **kwargs)
1731
+ else:
1732
+ raise ValueError(f'Unknown vision tower: {vision_tower}')
1733
+
1734
+ class LamedMetaModel:
1735
+ def __init__(self, config):
1736
+ super(LamedMetaModel, self).__init__(config)
1737
+
1738
+ self.config = config
1739
+ self.seg_enable = False
1740
+
1741
+ if hasattr(config, "vision_tower"):
1742
+ self.vision_tower = build_vision_tower(config)
1743
+ self.mm_projector = build_mm_projector(config)
1744
+
1745
+ if hasattr(config, "segmentation_module") and config.segmentation_module is not None:
1746
+ self.seg_enable = True
1747
+ self.seg_module = build_segmentation_module(config)
1748
+
1749
+ self.seg_projector = nn.Sequential(
1750
+ nn.Linear(config.hidden_size, config.hidden_size),
1751
+ nn.ReLU(inplace=True),
1752
+ nn.Linear(config.hidden_size, config.mm_hidden_size),
1753
+ nn.Dropout(0.1),
1754
+ )
1755
+
1756
+ self.dice_loss = BinaryDiceLoss()
1757
+ self.bce_loss = BCELoss()
1758
+
1759
+ def get_vision_tower(self):
1760
+ vision_tower = getattr(self, 'vision_tower', None)
1761
+ return vision_tower
1762
+
1763
+ def initialize_vision_modules(self, model_args):
1764
+ self.config.image_channel = model_args.image_channel
1765
+ self.config.image_size = model_args.image_size
1766
+ self.config.patch_size = model_args.patch_size
1767
+
1768
+ self.config.vision_tower = model_args.vision_tower
1769
+ self.config.vision_select_layer = model_args.vision_select_layer
1770
+ self.config.vision_select_feature = model_args.vision_select_feature
1771
+
1772
+ self.config.mm_projector_type = model_args.mm_projector_type
1773
+ self.config.proj_layer_type = model_args.proj_layer_type
1774
+ self.config.proj_layer_num = model_args.proj_layer_num
1775
+ self.config.proj_pooling_type = model_args.proj_pooling_type
1776
+ self.config.proj_pooling_size = model_args.proj_pooling_size
1777
+
1778
+ # vision tower
1779
+ if self.get_vision_tower() is None:
1780
+ self.vision_tower = build_vision_tower(self.config)
1781
+ # If you have a more robust vision encoder, try freezing the vision tower by requires_grad_(False)
1782
+
1783
+
1784
+ if model_args.pretrain_vision_model is not None:
1785
+ vision_model_weights = torch.load(model_args.pretrain_vision_model, map_location='cpu')
1786
+ self.vision_tower.vision_tower.load_state_dict(vision_model_weights, strict=True)
1787
+
1788
+ self.config.mm_hidden_size = self.vision_tower.hidden_size
1789
+
1790
+ # mm_projector
1791
+ if getattr(self, 'mm_projector', None) is None:
1792
+ self.mm_projector = build_mm_projector(self.config)
1793
+
1794
+ if model_args.pretrain_mm_mlp_adapter is not None:
1795
+ mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
1796
+ def get_w(weights, keyword):
1797
+ return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
1798
+ self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'), strict=True)
1799
+
1800
+ def initialize_seg_modules(self, model_args):
1801
+ self.config.segmentation_module = model_args.segmentation_module
1802
+
1803
+ # segmentation_module
1804
+ if getattr(self, 'segmentation_module', None) is None:
1805
+ self.seg_module = build_segmentation_module(self.config)
1806
+ self.seg_projector = nn.Sequential(
1807
+ nn.Linear(self.config.hidden_size, self.config.hidden_size),
1808
+ nn.ReLU(inplace=True),
1809
+ nn.Linear(self.config.hidden_size, self.config.mm_hidden_size),
1810
+ nn.Dropout(0.1),
1811
+ )
1812
+ self.seg_enable = True
1813
+
1814
+ if model_args.pretrain_seg_module is not None:
1815
+ seg_module_weights = torch.load(model_args.pretrain_seg_module, map_location='cpu')
1816
+ self.seg_module.load_state_dict(seg_module_weights, strict=True)
1817
+
1818
+ self.dice_loss = BinaryDiceLoss()
1819
+ self.bce_loss = BCELoss()
1820
+
1821
+ class LamedMetaForCausalLM(ABC):
1822
+ @abstractmethod
1823
+ def get_model(self):
1824
+ pass
1825
+
1826
+ def get_vision_tower(self):
1827
+ return self.get_model().get_vision_tower()
1828
+
1829
+ def encode_images(self, images):
1830
+ image_features = self.get_model().get_vision_tower()(images)
1831
+ image_features = self.get_model().mm_projector(image_features)
1832
+ return image_features
1833
+
1834
+ def prepare_inputs_for_multimodal(
1835
+ self, input_ids, position_ids, attention_mask, past_key_values, labels,
1836
+ images,
1837
+ ):
1838
+ vision_tower = self.get_vision_tower()
1839
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
1840
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
1841
+ else:
1842
+ image_features = self.encode_images(images)
1843
+ inputs_embeds = self.get_model().embed_tokens(input_ids)
1844
+ inputs_embeds = torch.cat(
1845
+ (inputs_embeds[:, :1, :], image_features, inputs_embeds[:, (image_features.shape[1] + 1):, :]), dim=1)
1846
+ return None, position_ids, attention_mask, past_key_values, inputs_embeds, labels
1847
+
1848
+ def initialize_vision_tokenizer(self, model_args, tokenizer):
1849
+ num_new_tokens = model_args.num_new_tokens
1850
+
1851
+ self.resize_token_embeddings(len(tokenizer))
1852
+
1853
+ if num_new_tokens > 0:
1854
+ input_embeddings = self.get_input_embeddings().weight.data
1855
+ output_embeddings = self.get_output_embeddings().weight.data
1856
+
1857
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
1858
+ dim=0, keepdim=True)
1859
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
1860
+ dim=0, keepdim=True)
1861
+
1862
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
1863
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
1864
+
1865
+ if model_args.tune_mm_mlp_adapter:
1866
+ for p in self.get_input_embeddings().parameters():
1867
+ p.requires_grad = True
1868
+ for p in self.get_output_embeddings().parameters():
1869
+ p.requires_grad = False
1870
+ else:
1871
+ # we add 4 new tokens
1872
+ # if new tokens need input, please train input_embeddings
1873
+ for p in self.get_input_embeddings().parameters():
1874
+ p.requires_grad = True
1875
+ # if new tokens need predict, please train output_embeddings
1876
+ for p in self.get_output_embeddings().parameters():
1877
+ p.requires_grad = True
1878
+
1879
+ if model_args.pretrain_mm_mlp_adapter:
1880
+ mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
1881
+ embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
1882
+
1883
+ if input_embeddings.shape == embed_tokens_weight.shape:
1884
+ input_embeddings = embed_tokens_weight
1885
+ elif embed_tokens_weight.shape[0] == num_new_tokens:
1886
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight
1887
+ else:
1888
+ raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
1889
+
1890
+
1891
+
1892
+ class LamedPhi3Model(LamedMetaModel, Phi3Model):
1893
+ config_class = LamedPhi3Config
1894
+ def __init__(self, config: Phi3Config):
1895
+ super(LamedPhi3Model, self).__init__(config)
1896
+
1897
+
1898
+ class LamedPhi3ForCausalLM(LamedMetaForCausalLM, Phi3ForCausalLM):
1899
+ config_class = LamedPhi3Config
1900
+
1901
+ def __init__(self, config):
1902
+ super(LamedPhi3ForCausalLM, self).__init__(config)
1903
+ self.model = LamedPhi3Model(config)
1904
+ self.vocab_size = config.vocab_size
1905
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1906
+
1907
+ # Initialize weights and apply final processing
1908
+ self.post_init()
1909
+
1910
+ def get_model(self):
1911
+ return self.model
1912
+
1913
+ def forward(
1914
+ self,
1915
+ images: Optional[torch.FloatTensor] = None,
1916
+ input_ids: torch.LongTensor = None,
1917
+ labels: Optional[torch.LongTensor] = None,
1918
+ attention_mask: Optional[torch.Tensor] = None,
1919
+ segs: Optional[torch.FloatTensor] = None,
1920
+
1921
+ position_ids: Optional[torch.LongTensor] = None,
1922
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1923
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1924
+ use_cache: Optional[bool] = None,
1925
+ output_attentions: Optional[bool] = None,
1926
+ output_hidden_states: Optional[bool] = None,
1927
+ return_dict: Optional[bool] = None,
1928
+ cache_position: Optional[torch.LongTensor] = None,
1929
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1930
+
1931
+ input_ids_pre = input_ids
1932
+
1933
+ if inputs_embeds is None:
1934
+ (
1935
+ input_ids,
1936
+ position_ids,
1937
+ attention_mask,
1938
+ past_key_values,
1939
+ inputs_embeds,
1940
+ labels
1941
+ ) = self.prepare_inputs_for_multimodal(
1942
+ input_ids,
1943
+ position_ids,
1944
+ attention_mask,
1945
+ past_key_values,
1946
+ labels,
1947
+ images,
1948
+ )
1949
+
1950
+ try:
1951
+ seg_ids = torch.nonzero(torch.sum(segs, dim=(1, 2, 3, 4))).flatten().tolist()
1952
+ except:
1953
+ seg_ids = []
1954
+
1955
+ if self.get_model().seg_enable and seg_ids:
1956
+ outputs = super().forward(
1957
+ input_ids=input_ids,
1958
+ inputs_embeds=inputs_embeds,
1959
+ attention_mask=attention_mask,
1960
+ labels=labels,
1961
+ output_hidden_states=True,
1962
+
1963
+ position_ids=position_ids,
1964
+ past_key_values=past_key_values,
1965
+ use_cache=use_cache,
1966
+ output_attentions=output_attentions,
1967
+ return_dict=return_dict
1968
+ )
1969
+
1970
+ output_hidden_states = outputs.hidden_states
1971
+
1972
+ last_hidden_state = output_hidden_states[-1]
1973
+
1974
+ seg_token_mask = input_ids_pre[:, 1:] == self.config.seg_token_id
1975
+ seg_token_mask = torch.cat(
1976
+ [
1977
+ seg_token_mask,
1978
+ torch.zeros((seg_token_mask.shape[0], 1), dtype=seg_token_mask.dtype).cuda(),
1979
+ ],
1980
+ dim=1,
1981
+ )
1982
+
1983
+ seg_prompts = []
1984
+ for i in seg_ids:
1985
+ if torch.sum(seg_token_mask[i]) == 1:
1986
+ seg_token = last_hidden_state[i][seg_token_mask[i]]
1987
+ seg_prompt = self.get_model().seg_projector(seg_token)
1988
+ elif torch.sum(seg_token_mask[i]) > 1:
1989
+ seg_tokens = last_hidden_state[i][seg_token_mask[i]]
1990
+ seg_token = torch.mean(seg_tokens, dim=0, keepdim=True)
1991
+ seg_prompt = self.get_model().seg_projector(seg_token)
1992
+ else:
1993
+ seg_prompt = torch.zeros([1, self.config.mm_hidden_size], dtype=last_hidden_state.dtype,
1994
+ device=last_hidden_state.device)
1995
+ seg_prompts.append(seg_prompt)
1996
+
1997
+ seg_prompts = torch.cat(seg_prompts, dim=0)
1998
+ logits = self.get_model().seg_module(images[seg_ids], text_emb=seg_prompts)
1999
+ loss_dice = self.get_model().dice_loss(logits, segs[seg_ids])
2000
+ loss_bce = self.get_model().bce_loss(logits, segs[seg_ids])
2001
+ seg_loss = loss_dice + loss_bce
2002
+ outputs.loss = outputs.loss + seg_loss
2003
+ return outputs
2004
+ else:
2005
+ return super().forward(
2006
+ input_ids=input_ids,
2007
+ attention_mask=attention_mask,
2008
+ position_ids=position_ids,
2009
+ past_key_values=past_key_values,
2010
+ inputs_embeds=inputs_embeds,
2011
+ labels=labels,
2012
+ use_cache=use_cache,
2013
+ output_attentions=output_attentions,
2014
+ output_hidden_states=output_hidden_states,
2015
+ return_dict=return_dict
2016
+ )
2017
+
2018
+
2019
+ @torch.no_grad()
2020
+ def generate(
2021
+ self,
2022
+ images: Optional[torch.Tensor] = None,
2023
+ inputs: Optional[torch.Tensor] = None,
2024
+ seg_enable: bool = False,
2025
+ **kwargs,
2026
+ ) -> Union[GenerateOutput, torch.LongTensor, Any]:
2027
+ position_ids = kwargs.pop("position_ids", None)
2028
+ attention_mask = kwargs.pop("attention_mask", None)
2029
+ if "inputs_embeds" in kwargs:
2030
+ raise NotImplementedError("`inputs_embeds` is not supported")
2031
+
2032
+ if images is not None:
2033
+ (
2034
+ inputs,
2035
+ position_ids,
2036
+ attention_mask,
2037
+ _,
2038
+ inputs_embeds,
2039
+ _
2040
+ ) = self.prepare_inputs_for_multimodal(
2041
+ inputs,
2042
+ position_ids,
2043
+ attention_mask,
2044
+ None,
2045
+ None,
2046
+ images,
2047
+ )
2048
+ else:
2049
+ inputs_embeds = self.get_model().embed_tokens(inputs)
2050
+
2051
+ if seg_enable:
2052
+ outputs = super().generate(
2053
+ inputs_embeds=inputs_embeds,
2054
+ output_hidden_states=True,
2055
+ return_dict_in_generate=True,
2056
+ **kwargs
2057
+ )
2058
+
2059
+ output_hidden_states = outputs.hidden_states
2060
+ output_ids = outputs.sequences
2061
+
2062
+ seg_token_mask = output_ids[:, 1:] == self.config.seg_token_id
2063
+
2064
+ last_tensors = [tuple[-1] for tuple in output_hidden_states]
2065
+ last_hidden_state = torch.cat(last_tensors[1:], dim=1)
2066
+
2067
+ seg_prompts = []
2068
+ noseg_ids = []
2069
+ for i in range(len(seg_token_mask)):
2070
+ if torch.sum(seg_token_mask[i]) == 1:
2071
+ seg_token = last_hidden_state[i][seg_token_mask[i]]
2072
+ seg_prompt = self.get_model().seg_projector(seg_token)
2073
+ elif torch.sum(seg_token_mask[i]) > 1:
2074
+ seg_tokens = last_hidden_state[i][seg_token_mask[i]]
2075
+ seg_token = torch.mean(seg_tokens, dim=0, keepdim=True)
2076
+ seg_prompt = self.get_model().seg_projector(seg_token)
2077
+ else:
2078
+ noseg_ids.append(i)
2079
+ seg_prompt = torch.zeros([1, self.config.mm_hidden_size], dtype=last_hidden_state.dtype,
2080
+ device=last_hidden_state.device)
2081
+ seg_prompts.append(seg_prompt)
2082
+
2083
+ seg_prompts = torch.cat(seg_prompts, dim=0)
2084
+ logits = self.get_model().seg_module(images, seg_prompts)
2085
+ logits[noseg_ids] = -torch.inf
2086
+
2087
+ return output_ids, logits
2088
+ else:
2089
+ output_ids = super().generate(
2090
+ inputs_embeds=inputs_embeds,
2091
+ **kwargs
2092
+ )
2093
+ return output_ids
2094
+
2095
+
2096
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
2097
+ inputs_embeds=None, **kwargs):
2098
+ images = kwargs.pop("images", None)
2099
+ inputs = super().prepare_inputs_for_generation(
2100
+ input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
2101
+ )
2102
+ if images is not None:
2103
+ inputs['images'] = images
2104
+ return inputs