File size: 8,151 Bytes
8dce373 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# Convert Hugging Face fine-tuned models to ggml format
#
# Usage:
#
# git clone https://github.com/openai/whisper
# git clone https://github.com/ggerganov/whisper.cpp
# git clone https://huggingface.co/openai/whisper-medium
#
# python3 ./whisper.cpp/models/convert-h5-to-ggml.py ./whisper-medium/ ./whisper .
#
# This script is similar to "convert-pt-to-ggml.py"
#
# For more info:
#
# https://github.com/ggerganov/whisper.cpp/issues/157
#
# RUN
# python3 ./convert-h5-to-ggml.py ./whisper-base-1m.hr-futo/ ./whisper whisper-base-1m.hr-futo/
# NEXT STEPS
# git clone whisper.cpp, build, quantize:
# ./build/bin/quantize models/whisper-base-1m.hr-futo/ggml-model.bin models/whisper-base-1m.hr-futo/base-1m.hr-futo-q80.bin q8_0
import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np
from pathlib import Path
from transformers import WhisperForConditionalGeneration
conv_map = {
'self_attn.k_proj' : 'attn.key',
'self_attn.q_proj' : 'attn.query',
'self_attn.v_proj' : 'attn.value',
'self_attn.out_proj' : 'attn.out',
'self_attn_layer_norm' : 'attn_ln',
'encoder_attn.q_proj' : 'cross_attn.query',
'encoder_attn.v_proj' : 'cross_attn.value',
'encoder_attn.out_proj' : 'cross_attn.out',
'encoder_attn_layer_norm' : 'cross_attn_ln',
'fc1' : 'mlp.0',
'fc2' : 'mlp.2',
'final_layer_norm' : 'mlp_ln',
'encoder.layer_norm.bias' : 'encoder.ln_post.bias',
'encoder.layer_norm.weight' : 'encoder.ln_post.weight',
'encoder.embed_positions.weight': 'encoder.positional_embedding',
'decoder.layer_norm.bias' : 'decoder.ln.bias',
'decoder.layer_norm.weight' : 'decoder.ln.weight',
'decoder.embed_positions.weight': 'decoder.positional_embedding',
'decoder.embed_tokens.weight' : 'decoder.token_embedding.weight',
'proj_out.weight' : 'decoder.proj.weight',
}
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
if len(sys.argv) < 4:
print("Usage: convert-h5-to-ggml.py dir_model path-to-whisper-repo dir-output [use-f32]\n")
sys.exit(1)
dir_model = Path(sys.argv[1])
dir_whisper = Path(sys.argv[2])
dir_out = Path(sys.argv[3])
encoder = json.load((dir_model / "vocab.json").open("r", encoding="utf8"))
encoder_added = json.load((dir_model / "added_tokens.json").open( "r", encoding="utf8"))
hparams = json.load((dir_model / "config.json").open("r", encoding="utf8"))
# Add this block to handle missing 'max_length'
print("hparams: ", hparams)
if "max_length" not in hparams or hparams["max_length"] == None:
print("max_length not found in config.json. Setting max_length to max_target_positions")
hparams["max_length"] = hparams.get("max_target_positions", 448)
print("max_length: ", hparams["max_length"])
#model = WhisperForConditionalGeneration.from_pretrained(dir_model)
print("Loading model from: ", dir_model)
model = WhisperForConditionalGeneration.from_pretrained(str(dir_model))
print("Model loaded")
#code.interact(local=locals())
n_mels = hparams["num_mel_bins"]
with np.load(os.path.join(dir_whisper, "whisper/assets", "mel_filters.npz")) as f:
filters = torch.from_numpy(f[f"mel_{n_mels}"])
dir_tokenizer = dir_model
fname_out = dir_out / "ggml-model.bin"
tokens = json.load(open(dir_tokenizer / "vocab.json", "r", encoding="utf8"))
# use 16-bit or 32-bit floats
use_f16 = True
if len(sys.argv) > 4:
use_f16 = False
fname_out = dir_out / "ggml-model-f32.bin"
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["max_source_positions"]))
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["encoder_attention_heads"]))
fout.write(struct.pack("i", hparams["encoder_layers"]))
fout.write(struct.pack("i", hparams["max_length"]))
fout.write(struct.pack("i", hparams["d_model"]))
fout.write(struct.pack("i", hparams["decoder_attention_heads"]))
fout.write(struct.pack("i", hparams["decoder_layers"]))
fout.write(struct.pack("i", hparams["num_mel_bins"]))
fout.write(struct.pack("i", use_f16))
fout.write(struct.pack("i", filters.shape[0]))
fout.write(struct.pack("i", filters.shape[1]))
for i in range(filters.shape[0]):
for j in range(filters.shape[1]):
fout.write(struct.pack("f", filters[i][j]))
byte_encoder = bytes_to_unicode()
byte_decoder = {v:k for k, v in byte_encoder.items()}
fout.write(struct.pack("i", len(tokens)))
tokens = sorted(tokens.items(), key=lambda x: x[1])
for key in tokens:
text = bytearray([byte_decoder[c] for c in key[0]])
fout.write(struct.pack("i", len(text)))
fout.write(text)
list_vars = model.state_dict()
for name in list_vars.keys():
# this seems to not be used
# ref: https://github.com/huggingface/transformers/blob/9a5b84a0076a04fe9596da72e8668069d4f09ea0/src/transformers/models/whisper/modeling_whisper.py#L1099-L1106
if name == "proj_out.weight":
print('Skipping', name)
continue
src = name
nn = name
if name != "proj_out.weight":
nn = nn.split(".")[1:]
else:
nn = nn.split(".")
if nn[1] == "layers":
nn[1] = "blocks"
if ".".join(nn[3:-1]) == "encoder_attn.k_proj":
mapped = "attn.key" if nn[0] == "encoder" else "cross_attn.key"
else:
mapped = conv_map[".".join(nn[3:-1])]
name = ".".join(nn[:3] + [mapped] + nn[-1:])
else:
name = ".".join(nn)
name = conv_map[name] if name in conv_map else name
print(src, ' -> ', name)
data = list_vars[src].squeeze().numpy()
data = data.astype(np.float16)
# reshape conv bias from [n] to [n, 1]
if name in ["encoder.conv1.bias", "encoder.conv2.bias"]:
data = data.reshape(data.shape[0], 1)
print(" Reshaped variable: " , name , " to shape: ", data.shape)
n_dims = len(data.shape)
print(name, n_dims, data.shape)
# looks like the whisper models are in f16 by default
# so we need to convert the small tensors to f32 until we fully support f16 in ggml
# ftype == 0 -> float32, ftype == 1 -> float16
ftype = 1
if use_f16:
if n_dims < 2 or \
name == "encoder.conv1.bias" or \
name == "encoder.conv2.bias" or \
name == "encoder.positional_embedding" or \
name == "decoder.positional_embedding":
print(" Converting to float32")
data = data.astype(np.float32)
ftype = 0
else:
data = data.astype(np.float32)
ftype = 0
# header
str_ = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str_), ftype))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str_)
# data
data.tofile(fout)
fout.close()
print("Done. Output file: " , fname_out)
print("")
|