File size: 2,053 Bytes
9c3fa60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
language:
- hr
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-base.hr
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-base.hr

This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the GoranS/stt-croatian_99k_265_2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3545
- Wer: 0.2541

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 6.25e-06
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.6206        | 0.5450 | 1000 | 0.5805          | 0.4175 |
| 0.4639        | 1.0899 | 2000 | 0.4649          | 0.3324 |
| 0.3994        | 1.6349 | 3000 | 0.4169          | 0.2988 |
| 0.3571        | 2.1798 | 4000 | 0.3907          | 0.2884 |
| 0.3248        | 2.7248 | 5000 | 0.3748          | 0.2790 |
| 0.2987        | 3.2698 | 6000 | 0.3660          | 0.2726 |
| 0.3133        | 3.8147 | 7000 | 0.3589          | 0.2544 |
| 0.2829        | 4.3597 | 8000 | 0.3565          | 0.2629 |
| 0.2688        | 4.9046 | 9000 | 0.3545          | 0.2541 |


### Framework versions

- Transformers 4.47.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.21.0