GreatCaptainNemo
commited on
Commit
•
5d9b5f6
1
Parent(s):
5da7aa0
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
# ProLLaMA: A Protein Large Language Model for Multi-Task Protein Language Processing
|
5 |
+
|
6 |
+
[Paper on arxiv](https://arxiv.org/abs/2402.16445) for more information
|
7 |
+
|
8 |
+
[Github](https://github.com/Lyu6PosHao/ProLLaMA) for more information
|
9 |
+
|
10 |
+
ProLLaMA_Stage_1 is based on Llama-2-7b, so please follow the license of Llama2.
|
11 |
+
# Quick usage:
|
12 |
+
```bash
|
13 |
+
# you can replace the model_path with your local path
|
14 |
+
CUDA_VISIBLE_DEVICES=0 python main.py --model "GreatCaptainNemo/ProLLaMA_Stage_1" --interactive
|
15 |
+
# main.py is as follows 👇:
|
16 |
+
```
|
17 |
+
|
18 |
+
```python
|
19 |
+
import argparse
|
20 |
+
import json, os
|
21 |
+
import torch
|
22 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
23 |
+
from transformers import GenerationConfig
|
24 |
+
from tqdm import tqdm
|
25 |
+
|
26 |
+
generation_config = GenerationConfig(
|
27 |
+
temperature=0.2,
|
28 |
+
top_k=40,
|
29 |
+
top_p=0.9,
|
30 |
+
do_sample=True,
|
31 |
+
num_beams=1,
|
32 |
+
repetition_penalty=1.2,
|
33 |
+
max_new_tokens=400
|
34 |
+
)
|
35 |
+
|
36 |
+
parser = argparse.ArgumentParser()
|
37 |
+
parser.add_argument('--model', default=None, type=str,help="The local path of the model. If None, the model will be downloaded from HuggingFace")
|
38 |
+
parser.add_argument('--interactive', action='store_true',help="If True, you can input instructions interactively. If False, the input instructions should be in the input_file.")
|
39 |
+
parser.add_argument('--input_file', default=None, help="You can put all your input instructions in this file (one instruction per line).")
|
40 |
+
parser.add_argument('--output_file', default=None, help="All the outputs will be saved in this file.")
|
41 |
+
args = parser.parse_args()
|
42 |
+
|
43 |
+
if __name__ == '__main__':
|
44 |
+
if args.interactive and args.input_file:
|
45 |
+
raise ValueError("interactive is True, but input_file is not None.")
|
46 |
+
if (not args.interactive) and (args.input_file is None):
|
47 |
+
raise ValueError("interactive is False, but input_file is None.")
|
48 |
+
if args.input_file and (args.output_file is None):
|
49 |
+
raise ValueError("input_file is not None, but output_file is None.")
|
50 |
+
|
51 |
+
load_type = torch.bfloat16
|
52 |
+
if torch.cuda.is_available():
|
53 |
+
device = torch.device(0)
|
54 |
+
else:
|
55 |
+
raise ValueError("No GPU available.")
|
56 |
+
|
57 |
+
|
58 |
+
model = LlamaForCausalLM.from_pretrained(
|
59 |
+
args.model,
|
60 |
+
torch_dtype=load_type,
|
61 |
+
low_cpu_mem_usage=True,
|
62 |
+
device_map='auto',
|
63 |
+
quantization_config=None
|
64 |
+
)
|
65 |
+
tokenizer = LlamaTokenizer.from_pretrained(args.model)
|
66 |
+
|
67 |
+
model.eval()
|
68 |
+
with torch.no_grad():
|
69 |
+
if args.interactive:
|
70 |
+
while True:
|
71 |
+
raw_input_text = input("Input:")
|
72 |
+
if len(raw_input_text.strip())==0:
|
73 |
+
break
|
74 |
+
input_text = raw_input_text
|
75 |
+
input_text = tokenizer(input_text,return_tensors="pt")
|
76 |
+
|
77 |
+
generation_output = model.generate(
|
78 |
+
input_ids = input_text["input_ids"].to(device),
|
79 |
+
attention_mask = input_text['attention_mask'].to(device),
|
80 |
+
eos_token_id=tokenizer.eos_token_id,
|
81 |
+
pad_token_id=tokenizer.pad_token_id,
|
82 |
+
generation_config = generation_config,
|
83 |
+
output_attentions=False
|
84 |
+
)
|
85 |
+
s = generation_output[0]
|
86 |
+
output = tokenizer.decode(s,skip_special_tokens=True)
|
87 |
+
print("Output:",output)
|
88 |
+
print("\n")
|
89 |
+
else:
|
90 |
+
outputs=[]
|
91 |
+
with open(args.input_file, 'r') as f:
|
92 |
+
examples =f.read().splitlines()
|
93 |
+
print("Start generating...")
|
94 |
+
for index, example in tqdm(enumerate(examples),total=len(examples)):
|
95 |
+
input_text = tokenizer(example,return_tensors="pt") #add_special_tokens=False ?
|
96 |
+
|
97 |
+
generation_output = model.generate(
|
98 |
+
input_ids = input_text["input_ids"].to(device),
|
99 |
+
attention_mask = input_text['attention_mask'].to(device),
|
100 |
+
eos_token_id=tokenizer.eos_token_id,
|
101 |
+
pad_token_id=tokenizer.pad_token_id,
|
102 |
+
generation_config = generation_config
|
103 |
+
)
|
104 |
+
s = generation_output[0]
|
105 |
+
output = tokenizer.decode(s,skip_special_tokens=True)
|
106 |
+
outputs.append(output)
|
107 |
+
with open(args.output_file,'w') as f:
|
108 |
+
f.write("\n".join(outputs))
|
109 |
+
print("All the outputs have been saved in",args.output_file)
|
110 |
+
```
|