--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer datasets: - told-br metrics: - precision - recall - accuracy - f1 model-index: - name: bert-base-multilingual-cased-finetuned-hate-speech-ptbr results: - task: name: Text Classification type: text-classification dataset: name: told-br type: told-br config: binary split: validation args: binary metrics: - name: Precision type: precision value: 0.702020202020202 - name: Recall type: recall value: 0.7654185022026432 - name: Accuracy type: accuracy value: 0.758095238095238 - name: F1 type: f1 value: 0.7590123199739615 --- # bert-base-multilingual-cased-finetuned-hate-speech-ptbr This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the told-br dataset. It achieves the following results on the evaluation set: - Loss: 0.6224 - Precision: 0.7020 - Recall: 0.7654 - Accuracy: 0.7581 - F1: 0.7590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| | 0.5127 | 1.0 | 1050 | 0.4978 | 0.6500 | 0.8756 | 0.7424 | 0.7418 | | 0.4415 | 2.0 | 2100 | 0.5206 | 0.7143 | 0.7104 | 0.7519 | 0.7518 | | 0.3623 | 3.0 | 3150 | 0.6204 | 0.6747 | 0.8293 | 0.7533 | 0.7542 | | 0.283 | 4.0 | 4200 | 0.6224 | 0.7020 | 0.7654 | 0.7581 | 0.7590 | | 0.2196 | 5.0 | 5250 | 0.7572 | 0.6954 | 0.7742 | 0.7557 | 0.7568 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3