File size: 2,487 Bytes
6558aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f237962
 
 
 
 
6558aaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5813a25
 
6558aaa
 
 
bbba7ea
6558aaa
 
 
 
 
f237962
 
 
 
 
 
 
 
 
 
6558aaa
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-multilingual-uncased-finetuned-ner-harem
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-base-multilingual-uncased-finetuned-ner-harem

This model is a fine-tuned version of [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1861
- Precision: 0.7833
- Recall: 0.7589
- F1: 0.7709
- Accuracy: 0.9634

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 282  | 0.2275          | 0.5847    | 0.6014 | 0.5929 | 0.9378   |
| 0.2687        | 2.0   | 564  | 0.1620          | 0.7389    | 0.6754 | 0.7057 | 0.9583   |
| 0.2687        | 3.0   | 846  | 0.1395          | 0.7820    | 0.7446 | 0.7628 | 0.9659   |
| 0.0845        | 4.0   | 1128 | 0.1694          | 0.7458    | 0.7351 | 0.7404 | 0.9586   |
| 0.0845        | 5.0   | 1410 | 0.1861          | 0.7833    | 0.7589 | 0.7709 | 0.9634   |
| 0.0398        | 6.0   | 1692 | 0.1821          | 0.7583    | 0.7637 | 0.7610 | 0.9639   |
| 0.0398        | 7.0   | 1974 | 0.2303          | 0.7789    | 0.7064 | 0.7409 | 0.9595   |
| 0.0203        | 8.0   | 2256 | 0.1912          | 0.7350    | 0.7876 | 0.7604 | 0.9629   |
| 0.0109        | 9.0   | 2538 | 0.2304          | 0.7524    | 0.7613 | 0.7568 | 0.9595   |
| 0.0109        | 10.0  | 2820 | 0.2457          | 0.7617    | 0.7399 | 0.7506 | 0.9622   |


### Framework versions

- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1