--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-large-uncased tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-uncased-finetuned-ner-lenerBr results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br config: lener_br split: validation args: lener_br metrics: - name: Precision type: precision value: 0.8195459032576505 - name: Recall type: recall value: 0.8534128289473685 - name: F1 type: f1 value: 0.8361365696444758 - name: Accuracy type: accuracy value: 0.9658050781203017 --- # bert-large-uncased-finetuned-ner-lenerBr This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the lener_br dataset. It achieves the following results on the evaluation set: - Loss: nan - Precision: 0.8195 - Recall: 0.8534 - F1: 0.8361 - Accuracy: 0.9658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9995 | 489 | nan | 0.6811 | 0.7451 | 0.7116 | 0.9503 | | 0.1982 | 1.9990 | 978 | nan | 0.7258 | 0.8314 | 0.7750 | 0.9536 | | 0.0517 | 2.9985 | 1467 | nan | 0.7487 | 0.8238 | 0.7845 | 0.9587 | | 0.0289 | 4.0 | 1957 | nan | 0.7801 | 0.8684 | 0.8219 | 0.9641 | | 0.0191 | 4.9995 | 2446 | nan | 0.7986 | 0.8567 | 0.8266 | 0.9665 | | 0.0138 | 5.9990 | 2935 | nan | 0.8120 | 0.8491 | 0.8302 | 0.9642 | | 0.0097 | 6.9985 | 3424 | nan | 0.8201 | 0.8643 | 0.8416 | 0.9663 | | 0.0076 | 8.0 | 3914 | nan | 0.8079 | 0.8672 | 0.8365 | 0.9660 | | 0.0053 | 8.9995 | 4403 | nan | 0.8211 | 0.8409 | 0.8309 | 0.9662 | | 0.0041 | 9.9949 | 4890 | nan | 0.8195 | 0.8534 | 0.8361 | 0.9658 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3