File size: 2,587 Bytes
be19c82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-large-finetuned-ner-geocorpus
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xlm-roberta-large-finetuned-ner-geocorpus

This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1447
- Precision: 0.8446
- Recall: 0.8970
- F1: 0.8700
- Accuracy: 0.9783

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 0.9991 | 275  | 0.1397          | 0.7230    | 0.7245 | 0.7237 | 0.9581   |
| 0.2086        | 1.9982 | 550  | 0.1079          | 0.7256    | 0.8507 | 0.7832 | 0.9655   |
| 0.2086        | 2.9973 | 825  | 0.0866          | 0.8121    | 0.8496 | 0.8304 | 0.9733   |
| 0.0636        | 4.0    | 1101 | 0.0830          | 0.8030    | 0.9001 | 0.8488 | 0.9759   |
| 0.0636        | 4.9991 | 1376 | 0.1024          | 0.8433    | 0.8770 | 0.8598 | 0.9756   |
| 0.032         | 5.9982 | 1651 | 0.1036          | 0.84      | 0.8833 | 0.8611 | 0.9784   |
| 0.032         | 6.9973 | 1926 | 0.1132          | 0.8278    | 0.8948 | 0.8600 | 0.9752   |
| 0.0165        | 8.0    | 2202 | 0.1211          | 0.8473    | 0.8927 | 0.8694 | 0.9782   |
| 0.0165        | 8.9991 | 2477 | 0.1406          | 0.8402    | 0.8959 | 0.8672 | 0.9775   |
| 0.0089        | 9.9909 | 2750 | 0.1447          | 0.8446    | 0.8970 | 0.8700 | 0.9783   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3