File size: 12,348 Bytes
89cf463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import cv2
import numexpr as ne
import numpy as np
import scipy as sp
from numpy import linalg as npla
def color_transfer_sot(src,trg, steps=10, batch_size=5, reg_sigmaXY=16.0, reg_sigmaV=5.0):
"""
Color Transform via Sliced Optimal Transfer
ported by @iperov from https://github.com/dcoeurjo/OTColorTransfer
src - any float range any channel image
dst - any float range any channel image, same shape as src
steps - number of solver steps
batch_size - solver batch size
reg_sigmaXY - apply regularization and sigmaXY of filter, otherwise set to 0.0
reg_sigmaV - sigmaV of filter
return value - clip it manually
"""
if not np.issubdtype(src.dtype, np.floating):
raise ValueError("src value must be float")
if not np.issubdtype(trg.dtype, np.floating):
raise ValueError("trg value must be float")
if len(src.shape) != 3:
raise ValueError("src shape must have rank 3 (h,w,c)")
if src.shape != trg.shape:
raise ValueError("src and trg shapes must be equal")
src_dtype = src.dtype
h,w,c = src.shape
new_src = src.copy()
advect = np.empty ( (h*w,c), dtype=src_dtype )
for step in range (steps):
advect.fill(0)
for batch in range (batch_size):
dir = np.random.normal(size=c).astype(src_dtype)
dir /= npla.norm(dir)
projsource = np.sum( new_src*dir, axis=-1).reshape ((h*w))
projtarget = np.sum( trg*dir, axis=-1).reshape ((h*w))
idSource = np.argsort (projsource)
idTarget = np.argsort (projtarget)
a = projtarget[idTarget]-projsource[idSource]
for i_c in range(c):
advect[idSource,i_c] += a * dir[i_c]
new_src += advect.reshape( (h,w,c) ) / batch_size
if reg_sigmaXY != 0.0:
src_diff = new_src-src
src_diff_filt = cv2.bilateralFilter (src_diff, 0, reg_sigmaV, reg_sigmaXY )
if len(src_diff_filt.shape) == 2:
src_diff_filt = src_diff_filt[...,None]
new_src = src + src_diff_filt
return new_src
def color_transfer_mkl(x0, x1):
eps = np.finfo(float).eps
h,w,c = x0.shape
h1,w1,c1 = x1.shape
x0 = x0.reshape ( (h*w,c) )
x1 = x1.reshape ( (h1*w1,c1) )
a = np.cov(x0.T)
b = np.cov(x1.T)
Da2, Ua = np.linalg.eig(a)
Da = np.diag(np.sqrt(Da2.clip(eps, None)))
C = np.dot(np.dot(np.dot(np.dot(Da, Ua.T), b), Ua), Da)
Dc2, Uc = np.linalg.eig(C)
Dc = np.diag(np.sqrt(Dc2.clip(eps, None)))
Da_inv = np.diag(1./(np.diag(Da)))
t = np.dot(np.dot(np.dot(np.dot(np.dot(np.dot(Ua, Da_inv), Uc), Dc), Uc.T), Da_inv), Ua.T)
mx0 = np.mean(x0, axis=0)
mx1 = np.mean(x1, axis=0)
result = np.dot(x0-mx0, t) + mx1
return np.clip ( result.reshape ( (h,w,c) ).astype(x0.dtype), 0, 1)
def color_transfer_idt(i0, i1, bins=256, n_rot=20):
import scipy.stats
relaxation = 1 / n_rot
h,w,c = i0.shape
h1,w1,c1 = i1.shape
i0 = i0.reshape ( (h*w,c) )
i1 = i1.reshape ( (h1*w1,c1) )
n_dims = c
d0 = i0.T
d1 = i1.T
for i in range(n_rot):
r = sp.stats.special_ortho_group.rvs(n_dims).astype(np.float32)
d0r = np.dot(r, d0)
d1r = np.dot(r, d1)
d_r = np.empty_like(d0)
for j in range(n_dims):
lo = min(d0r[j].min(), d1r[j].min())
hi = max(d0r[j].max(), d1r[j].max())
p0r, edges = np.histogram(d0r[j], bins=bins, range=[lo, hi])
p1r, _ = np.histogram(d1r[j], bins=bins, range=[lo, hi])
cp0r = p0r.cumsum().astype(np.float32)
cp0r /= cp0r[-1]
cp1r = p1r.cumsum().astype(np.float32)
cp1r /= cp1r[-1]
f = np.interp(cp0r, cp1r, edges[1:])
d_r[j] = np.interp(d0r[j], edges[1:], f, left=0, right=bins)
d0 = relaxation * np.linalg.solve(r, (d_r - d0r)) + d0
return np.clip ( d0.T.reshape ( (h,w,c) ).astype(i0.dtype) , 0, 1)
def reinhard_color_transfer(target : np.ndarray, source : np.ndarray, target_mask : np.ndarray = None, source_mask : np.ndarray = None, mask_cutoff=0.5) -> np.ndarray:
"""
Transfer color using rct method.
target np.ndarray H W 3C (BGR) np.float32
source np.ndarray H W 3C (BGR) np.float32
target_mask(None) np.ndarray H W 1C np.float32
source_mask(None) np.ndarray H W 1C np.float32
mask_cutoff(0.5) float
masks are used to limit the space where color statistics will be computed to adjust the target
reference: Color Transfer between Images https://www.cs.tau.ac.il/~turkel/imagepapers/ColorTransfer.pdf
"""
source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)
source_input = source
if source_mask is not None:
source_input = source_input.copy()
source_input[source_mask[...,0] < mask_cutoff] = [0,0,0]
target_input = target
if target_mask is not None:
target_input = target_input.copy()
target_input[target_mask[...,0] < mask_cutoff] = [0,0,0]
target_l_mean, target_l_std, target_a_mean, target_a_std, target_b_mean, target_b_std, \
= target_input[...,0].mean(), target_input[...,0].std(), target_input[...,1].mean(), target_input[...,1].std(), target_input[...,2].mean(), target_input[...,2].std()
source_l_mean, source_l_std, source_a_mean, source_a_std, source_b_mean, source_b_std, \
= source_input[...,0].mean(), source_input[...,0].std(), source_input[...,1].mean(), source_input[...,1].std(), source_input[...,2].mean(), source_input[...,2].std()
# not as in the paper: scale by the standard deviations using reciprocal of paper proposed factor
target_l = target[...,0]
target_l = ne.evaluate('(target_l - target_l_mean) * source_l_std / target_l_std + source_l_mean')
target_a = target[...,1]
target_a = ne.evaluate('(target_a - target_a_mean) * source_a_std / target_a_std + source_a_mean')
target_b = target[...,2]
target_b = ne.evaluate('(target_b - target_b_mean) * source_b_std / target_b_std + source_b_mean')
np.clip(target_l, 0, 100, out=target_l)
np.clip(target_a, -127, 127, out=target_a)
np.clip(target_b, -127, 127, out=target_b)
return cv2.cvtColor(np.stack([target_l,target_a,target_b], -1), cv2.COLOR_LAB2BGR)
def linear_color_transfer(target_img, source_img, mode='pca', eps=1e-5):
'''
Matches the colour distribution of the target image to that of the source image
using a linear transform.
Images are expected to be of form (w,h,c) and float in [0,1].
Modes are chol, pca or sym for different choices of basis.
'''
mu_t = target_img.mean(0).mean(0)
t = target_img - mu_t
t = t.transpose(2,0,1).reshape( t.shape[-1],-1)
t = t.reshape( t.shape[-1],-1)
Ct = t.dot(t.T) / t.shape[1] + eps * np.eye(t.shape[0])
mu_s = source_img.mean(0).mean(0)
s = source_img - mu_s
s = s.transpose(2,0,1).reshape( s.shape[-1],-1)
Cs = s.dot(s.T) / s.shape[1] + eps * np.eye(s.shape[0])
if mode == 'chol':
chol_t = np.linalg.cholesky(Ct)
chol_s = np.linalg.cholesky(Cs)
ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t)
if mode == 'pca':
eva_t, eve_t = np.linalg.eigh(Ct)
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
eva_s, eve_s = np.linalg.eigh(Cs)
Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T)
ts = Qs.dot(np.linalg.inv(Qt)).dot(t)
if mode == 'sym':
eva_t, eve_t = np.linalg.eigh(Ct)
Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
Qt_Cs_Qt = Qt.dot(Cs).dot(Qt)
eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt)
QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T)
ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t)
matched_img = ts.reshape(*target_img.transpose(2,0,1).shape).transpose(1,2,0)
matched_img += mu_s
matched_img[matched_img>1] = 1
matched_img[matched_img<0] = 0
return np.clip(matched_img.astype(source_img.dtype), 0, 1)
def lab_image_stats(image):
# compute the mean and standard deviation of each channel
(l, a, b) = cv2.split(image)
(lMean, lStd) = (l.mean(), l.std())
(aMean, aStd) = (a.mean(), a.std())
(bMean, bStd) = (b.mean(), b.std())
# return the color statistics
return (lMean, lStd, aMean, aStd, bMean, bStd)
def _scale_array(arr, clip=True):
if clip:
return np.clip(arr, 0, 255)
mn = arr.min()
mx = arr.max()
scale_range = (max([mn, 0]), min([mx, 255]))
if mn < scale_range[0] or mx > scale_range[1]:
return (scale_range[1] - scale_range[0]) * (arr - mn) / (mx - mn) + scale_range[0]
return arr
def channel_hist_match(source, template, hist_match_threshold=255, mask=None):
# Code borrowed from:
# https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x
masked_source = source
masked_template = template
if mask is not None:
masked_source = source * mask
masked_template = template * mask
oldshape = source.shape
source = source.ravel()
template = template.ravel()
masked_source = masked_source.ravel()
masked_template = masked_template.ravel()
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
return_counts=True)
t_values, t_counts = np.unique(template, return_counts=True)
s_quantiles = np.cumsum(s_counts).astype(np.float64)
s_quantiles = hist_match_threshold * s_quantiles / s_quantiles[-1]
t_quantiles = np.cumsum(t_counts).astype(np.float64)
t_quantiles = 255 * t_quantiles / t_quantiles[-1]
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)
return interp_t_values[bin_idx].reshape(oldshape)
def color_hist_match(src_im, tar_im, hist_match_threshold=255):
h,w,c = src_im.shape
matched_R = channel_hist_match(src_im[:,:,0], tar_im[:,:,0], hist_match_threshold, None)
matched_G = channel_hist_match(src_im[:,:,1], tar_im[:,:,1], hist_match_threshold, None)
matched_B = channel_hist_match(src_im[:,:,2], tar_im[:,:,2], hist_match_threshold, None)
to_stack = (matched_R, matched_G, matched_B)
for i in range(3, c):
to_stack += ( src_im[:,:,i],)
matched = np.stack(to_stack, axis=-1).astype(src_im.dtype)
return matched
def color_transfer_mix(img_src,img_trg):
img_src = np.clip(img_src*255.0, 0, 255).astype(np.uint8)
img_trg = np.clip(img_trg*255.0, 0, 255).astype(np.uint8)
img_src_lab = cv2.cvtColor(img_src, cv2.COLOR_BGR2LAB)
img_trg_lab = cv2.cvtColor(img_trg, cv2.COLOR_BGR2LAB)
rct_light = np.clip ( linear_color_transfer(img_src_lab[...,0:1].astype(np.float32)/255.0,
img_trg_lab[...,0:1].astype(np.float32)/255.0 )[...,0]*255.0,
0, 255).astype(np.uint8)
img_src_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8)
img_src_lab = cv2.cvtColor(img_src_lab, cv2.COLOR_LAB2BGR)
img_trg_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8)
img_trg_lab = cv2.cvtColor(img_trg_lab, cv2.COLOR_LAB2BGR)
img_rct = color_transfer_sot( img_src_lab.astype(np.float32), img_trg_lab.astype(np.float32) )
img_rct = np.clip(img_rct, 0, 255).astype(np.uint8)
img_rct = cv2.cvtColor(img_rct, cv2.COLOR_BGR2LAB)
img_rct[...,0] = rct_light
img_rct = cv2.cvtColor(img_rct, cv2.COLOR_LAB2BGR)
return (img_rct / 255.0).astype(np.float32)
def color_transfer(ct_mode, img_src, img_trg):
"""
color transfer for [0,1] float32 inputs
"""
if ct_mode == 'lct':
out = linear_color_transfer(img_src, img_trg)
elif ct_mode == 'rct':
out = reinhard_color_transfer(img_src, img_trg)
elif ct_mode == 'mkl':
out = color_transfer_mkl(img_src, img_trg)
elif ct_mode == 'idt':
out = color_transfer_idt(img_src, img_trg)
elif ct_mode == 'sot':
out = color_transfer_sot(img_src, img_trg)
out = np.clip( out, 0.0, 1.0)
else:
raise ValueError(f"unknown ct_mode {ct_mode}")
return out
|