File size: 12,348 Bytes
89cf463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import cv2
import numexpr as ne
import numpy as np
import scipy as sp
from numpy import linalg as npla


def color_transfer_sot(src,trg, steps=10, batch_size=5, reg_sigmaXY=16.0, reg_sigmaV=5.0):
    """
    Color Transform via Sliced Optimal Transfer
    ported by @iperov from https://github.com/dcoeurjo/OTColorTransfer

    src         - any float range any channel image
    dst         - any float range any channel image, same shape as src
    steps       - number of solver steps
    batch_size  - solver batch size
    reg_sigmaXY - apply regularization and sigmaXY of filter, otherwise set to 0.0
    reg_sigmaV  - sigmaV of filter

    return value - clip it manually
    """
    if not np.issubdtype(src.dtype, np.floating):
        raise ValueError("src value must be float")
    if not np.issubdtype(trg.dtype, np.floating):
        raise ValueError("trg value must be float")

    if len(src.shape) != 3:
        raise ValueError("src shape must have rank 3 (h,w,c)")

    if src.shape != trg.shape:
        raise ValueError("src and trg shapes must be equal")

    src_dtype = src.dtype
    h,w,c = src.shape
    new_src = src.copy()

    advect = np.empty ( (h*w,c), dtype=src_dtype )
    for step in range (steps):
        advect.fill(0)
        for batch in range (batch_size):
            dir = np.random.normal(size=c).astype(src_dtype)
            dir /= npla.norm(dir)

            projsource = np.sum( new_src*dir, axis=-1).reshape ((h*w))
            projtarget = np.sum( trg*dir, axis=-1).reshape ((h*w))

            idSource = np.argsort (projsource)
            idTarget = np.argsort (projtarget)

            a = projtarget[idTarget]-projsource[idSource]
            for i_c in range(c):
                advect[idSource,i_c] += a * dir[i_c]
        new_src += advect.reshape( (h,w,c) ) / batch_size

    if reg_sigmaXY != 0.0:
        src_diff = new_src-src
        src_diff_filt = cv2.bilateralFilter (src_diff, 0, reg_sigmaV, reg_sigmaXY )
        if len(src_diff_filt.shape) == 2:
            src_diff_filt = src_diff_filt[...,None]
        new_src = src + src_diff_filt
    return new_src

def color_transfer_mkl(x0, x1):
    eps = np.finfo(float).eps

    h,w,c = x0.shape
    h1,w1,c1 = x1.shape

    x0 = x0.reshape ( (h*w,c) )
    x1 = x1.reshape ( (h1*w1,c1) )

    a = np.cov(x0.T)
    b = np.cov(x1.T)

    Da2, Ua = np.linalg.eig(a)
    Da = np.diag(np.sqrt(Da2.clip(eps, None)))

    C = np.dot(np.dot(np.dot(np.dot(Da, Ua.T), b), Ua), Da)

    Dc2, Uc = np.linalg.eig(C)
    Dc = np.diag(np.sqrt(Dc2.clip(eps, None)))

    Da_inv = np.diag(1./(np.diag(Da)))

    t = np.dot(np.dot(np.dot(np.dot(np.dot(np.dot(Ua, Da_inv), Uc), Dc), Uc.T), Da_inv), Ua.T)

    mx0 = np.mean(x0, axis=0)
    mx1 = np.mean(x1, axis=0)

    result = np.dot(x0-mx0, t) + mx1
    return np.clip ( result.reshape ( (h,w,c) ).astype(x0.dtype), 0, 1)

def color_transfer_idt(i0, i1, bins=256, n_rot=20):
    import scipy.stats
    
    relaxation = 1 / n_rot
    h,w,c = i0.shape
    h1,w1,c1 = i1.shape

    i0 = i0.reshape ( (h*w,c) )
    i1 = i1.reshape ( (h1*w1,c1) )

    n_dims = c

    d0 = i0.T
    d1 = i1.T

    for i in range(n_rot):

        r = sp.stats.special_ortho_group.rvs(n_dims).astype(np.float32)

        d0r = np.dot(r, d0)
        d1r = np.dot(r, d1)
        d_r = np.empty_like(d0)

        for j in range(n_dims):

            lo = min(d0r[j].min(), d1r[j].min())
            hi = max(d0r[j].max(), d1r[j].max())

            p0r, edges = np.histogram(d0r[j], bins=bins, range=[lo, hi])
            p1r, _     = np.histogram(d1r[j], bins=bins, range=[lo, hi])

            cp0r = p0r.cumsum().astype(np.float32)
            cp0r /= cp0r[-1]

            cp1r = p1r.cumsum().astype(np.float32)
            cp1r /= cp1r[-1]

            f = np.interp(cp0r, cp1r, edges[1:])

            d_r[j] = np.interp(d0r[j], edges[1:], f, left=0, right=bins)

        d0 = relaxation * np.linalg.solve(r, (d_r - d0r)) + d0

    return np.clip ( d0.T.reshape ( (h,w,c) ).astype(i0.dtype) , 0, 1)

def reinhard_color_transfer(target : np.ndarray, source : np.ndarray, target_mask : np.ndarray = None, source_mask : np.ndarray = None, mask_cutoff=0.5) -> np.ndarray:
    """
    Transfer color using rct method.

        target      np.ndarray H W 3C   (BGR)   np.float32
        source      np.ndarray H W 3C   (BGR)   np.float32

        target_mask(None)   np.ndarray H W 1C  np.float32
        source_mask(None)   np.ndarray H W 1C  np.float32
        
        mask_cutoff(0.5)    float

    masks are used to limit the space where color statistics will be computed to adjust the target

    reference: Color Transfer between Images https://www.cs.tau.ac.il/~turkel/imagepapers/ColorTransfer.pdf
    """
    source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB)
    target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB)

    source_input = source
    if source_mask is not None:
        source_input = source_input.copy()
        source_input[source_mask[...,0] < mask_cutoff] = [0,0,0]
    
    target_input = target
    if target_mask is not None:
        target_input = target_input.copy()
        target_input[target_mask[...,0] < mask_cutoff] = [0,0,0]

    target_l_mean, target_l_std, target_a_mean, target_a_std, target_b_mean, target_b_std, \
        = target_input[...,0].mean(), target_input[...,0].std(), target_input[...,1].mean(), target_input[...,1].std(), target_input[...,2].mean(), target_input[...,2].std()
    
    source_l_mean, source_l_std, source_a_mean, source_a_std, source_b_mean, source_b_std, \
        = source_input[...,0].mean(), source_input[...,0].std(), source_input[...,1].mean(), source_input[...,1].std(), source_input[...,2].mean(), source_input[...,2].std()
    
    # not as in the paper: scale by the standard deviations using reciprocal of paper proposed factor
    target_l = target[...,0]
    target_l = ne.evaluate('(target_l - target_l_mean) * source_l_std / target_l_std + source_l_mean')

    target_a = target[...,1]
    target_a = ne.evaluate('(target_a - target_a_mean) * source_a_std / target_a_std + source_a_mean')
    
    target_b = target[...,2]
    target_b = ne.evaluate('(target_b - target_b_mean) * source_b_std / target_b_std + source_b_mean')

    np.clip(target_l,    0, 100, out=target_l)
    np.clip(target_a, -127, 127, out=target_a)
    np.clip(target_b, -127, 127, out=target_b)

    return cv2.cvtColor(np.stack([target_l,target_a,target_b], -1), cv2.COLOR_LAB2BGR)


def linear_color_transfer(target_img, source_img, mode='pca', eps=1e-5):
    '''
    Matches the colour distribution of the target image to that of the source image
    using a linear transform.
    Images are expected to be of form (w,h,c) and float in [0,1].
    Modes are chol, pca or sym for different choices of basis.
    '''
    mu_t = target_img.mean(0).mean(0)
    t = target_img - mu_t
    t = t.transpose(2,0,1).reshape( t.shape[-1],-1)
    t = t.reshape( t.shape[-1],-1)
    Ct = t.dot(t.T) / t.shape[1] + eps * np.eye(t.shape[0])
    mu_s = source_img.mean(0).mean(0)
    s = source_img - mu_s
    s = s.transpose(2,0,1).reshape( s.shape[-1],-1)
    Cs = s.dot(s.T) / s.shape[1] + eps * np.eye(s.shape[0])
    if mode == 'chol':
        chol_t = np.linalg.cholesky(Ct)
        chol_s = np.linalg.cholesky(Cs)
        ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t)
    if mode == 'pca':
        eva_t, eve_t = np.linalg.eigh(Ct)
        Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
        eva_s, eve_s = np.linalg.eigh(Cs)
        Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T)
        ts = Qs.dot(np.linalg.inv(Qt)).dot(t)
    if mode == 'sym':
        eva_t, eve_t = np.linalg.eigh(Ct)
        Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T)
        Qt_Cs_Qt = Qt.dot(Cs).dot(Qt)
        eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt)
        QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T)
        ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t)
    matched_img = ts.reshape(*target_img.transpose(2,0,1).shape).transpose(1,2,0)
    matched_img += mu_s
    matched_img[matched_img>1] = 1
    matched_img[matched_img<0] = 0
    return np.clip(matched_img.astype(source_img.dtype), 0, 1)

def lab_image_stats(image):
    # compute the mean and standard deviation of each channel
    (l, a, b) = cv2.split(image)
    (lMean, lStd) = (l.mean(), l.std())
    (aMean, aStd) = (a.mean(), a.std())
    (bMean, bStd) = (b.mean(), b.std())

    # return the color statistics
    return (lMean, lStd, aMean, aStd, bMean, bStd)

def _scale_array(arr, clip=True):
    if clip:
        return np.clip(arr, 0, 255)

    mn = arr.min()
    mx = arr.max()
    scale_range = (max([mn, 0]), min([mx, 255]))

    if mn < scale_range[0] or mx > scale_range[1]:
        return (scale_range[1] - scale_range[0]) * (arr - mn) / (mx - mn) + scale_range[0]

    return arr

def channel_hist_match(source, template, hist_match_threshold=255, mask=None):
    # Code borrowed from:
    # https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x
    masked_source = source
    masked_template = template

    if mask is not None:
        masked_source = source * mask
        masked_template = template * mask

    oldshape = source.shape
    source = source.ravel()
    template = template.ravel()
    masked_source = masked_source.ravel()
    masked_template = masked_template.ravel()
    s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
                                            return_counts=True)
    t_values, t_counts = np.unique(template, return_counts=True)

    s_quantiles = np.cumsum(s_counts).astype(np.float64)
    s_quantiles = hist_match_threshold * s_quantiles / s_quantiles[-1]
    t_quantiles = np.cumsum(t_counts).astype(np.float64)
    t_quantiles = 255 * t_quantiles / t_quantiles[-1]
    interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)

    return interp_t_values[bin_idx].reshape(oldshape)

def color_hist_match(src_im, tar_im, hist_match_threshold=255):
    h,w,c = src_im.shape
    matched_R = channel_hist_match(src_im[:,:,0], tar_im[:,:,0], hist_match_threshold, None)
    matched_G = channel_hist_match(src_im[:,:,1], tar_im[:,:,1], hist_match_threshold, None)
    matched_B = channel_hist_match(src_im[:,:,2], tar_im[:,:,2], hist_match_threshold, None)

    to_stack = (matched_R, matched_G, matched_B)
    for i in range(3, c):
        to_stack += ( src_im[:,:,i],)


    matched = np.stack(to_stack, axis=-1).astype(src_im.dtype)
    return matched

def color_transfer_mix(img_src,img_trg):
    img_src = np.clip(img_src*255.0, 0, 255).astype(np.uint8)
    img_trg = np.clip(img_trg*255.0, 0, 255).astype(np.uint8)

    img_src_lab = cv2.cvtColor(img_src, cv2.COLOR_BGR2LAB)
    img_trg_lab = cv2.cvtColor(img_trg, cv2.COLOR_BGR2LAB)

    rct_light = np.clip ( linear_color_transfer(img_src_lab[...,0:1].astype(np.float32)/255.0,
                                                img_trg_lab[...,0:1].astype(np.float32)/255.0 )[...,0]*255.0,
                          0, 255).astype(np.uint8)

    img_src_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8)
    img_src_lab = cv2.cvtColor(img_src_lab, cv2.COLOR_LAB2BGR)

    img_trg_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8)
    img_trg_lab = cv2.cvtColor(img_trg_lab, cv2.COLOR_LAB2BGR)

    img_rct = color_transfer_sot( img_src_lab.astype(np.float32), img_trg_lab.astype(np.float32) )
    img_rct = np.clip(img_rct, 0, 255).astype(np.uint8)

    img_rct = cv2.cvtColor(img_rct, cv2.COLOR_BGR2LAB)
    img_rct[...,0] = rct_light
    img_rct = cv2.cvtColor(img_rct, cv2.COLOR_LAB2BGR)


    return (img_rct / 255.0).astype(np.float32)

def color_transfer(ct_mode, img_src, img_trg):
    """
    color transfer for [0,1] float32 inputs
    """
    if ct_mode == 'lct':
        out = linear_color_transfer(img_src, img_trg)
    elif ct_mode == 'rct':
        out = reinhard_color_transfer(img_src, img_trg)
    elif ct_mode == 'mkl':
        out = color_transfer_mkl(img_src, img_trg)
    elif ct_mode == 'idt':
        out = color_transfer_idt(img_src, img_trg)
    elif ct_mode == 'sot':
        out = color_transfer_sot(img_src, img_trg)
        out = np.clip( out, 0.0, 1.0)
    else:
        raise ValueError(f"unknown ct_mode {ct_mode}")
    return out