File size: 11,538 Bytes
89cf463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
"""
Copyright (c) 2009-2010 Arizona Board of Regents. All Rights Reserved.
Contact: Lina Karam ([email protected]) and Niranjan Narvekar ([email protected])
Image, Video, and Usabilty (IVU) Lab, http://ivulab.asu.edu , Arizona State University
This copyright statement may not be removed from any file containing it or from modifications to these files.
This copyright notice must also be included in any file or product that is derived from the source files.
Redistribution and use of this code in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:
- Redistribution's of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
- Redistribution's in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution.
- The Image, Video, and Usability Laboratory (IVU Lab, http://ivulab.asu.edu) is acknowledged in any publication that
reports research results using this code, copies of this code, or modifications of this code.
The code and our papers are to be cited in the bibliography as:
N. D. Narvekar and L. J. Karam, "CPBD Sharpness Metric Software", http://ivulab.asu.edu/Quality/CPBD
N. D. Narvekar and L. J. Karam, "A No-Reference Image Blur Metric Based on the Cumulative
Probability of Blur Detection (CPBD)," accepted and to appear in the IEEE Transactions on Image Processing, 2011.
N. D. Narvekar and L. J. Karam, "An Improved No-Reference Sharpness Metric Based on the Probability of Blur Detection," International Workshop on Video Processing and Quality Metrics for Consumer Electronics (VPQM), January 2010, http://www.vpqm.org (pdf)
N. D. Narvekar and L. J. Karam, "A No Reference Perceptual Quality Metric based on Cumulative Probability of Blur Detection," First International Workshop on the Quality of Multimedia Experience (QoMEX), pp. 87-91, July 2009.
DISCLAIMER:
This software is provided by the copyright holders and contributors "as is" and any express or implied warranties, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose are disclaimed. In no event shall the Arizona Board of Regents, Arizona State University, IVU Lab members, authors or contributors be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but not limited to, procurement of substitute
goods or services; loss of use, data, or profits; or business interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort (including negligence or otherwise) arising in any way out of the use of this software, even if advised of the possibility of such damage.
"""
import numpy as np
import cv2
from math import atan2, pi
def sobel(image):
# type: (numpy.ndarray) -> numpy.ndarray
"""
Find edges using the Sobel approximation to the derivatives.
Inspired by the [Octave implementation](https://sourceforge.net/p/octave/image/ci/default/tree/inst/edge.m#l196).
"""
from skimage.filters.edges import HSOBEL_WEIGHTS
h1 = np.array(HSOBEL_WEIGHTS)
h1 /= np.sum(abs(h1)) # normalize h1
from scipy.ndimage import convolve
strength2 = np.square(convolve(image, h1.T))
# Note: https://sourceforge.net/p/octave/image/ci/default/tree/inst/edge.m#l59
thresh2 = 2 * np.sqrt(np.mean(strength2))
strength2[strength2 <= thresh2] = 0
return _simple_thinning(strength2)
def _simple_thinning(strength):
# type: (numpy.ndarray) -> numpy.ndarray
"""
Perform a very simple thinning.
Inspired by the [Octave implementation](https://sourceforge.net/p/octave/image/ci/default/tree/inst/edge.m#l512).
"""
num_rows, num_cols = strength.shape
zero_column = np.zeros((num_rows, 1))
zero_row = np.zeros((1, num_cols))
x = (
(strength > np.c_[zero_column, strength[:, :-1]]) &
(strength > np.c_[strength[:, 1:], zero_column])
)
y = (
(strength > np.r_[zero_row, strength[:-1, :]]) &
(strength > np.r_[strength[1:, :], zero_row])
)
return x | y
# threshold to characterize blocks as edge/non-edge blocks
THRESHOLD = 0.002
# fitting parameter
BETA = 3.6
# block size
BLOCK_HEIGHT, BLOCK_WIDTH = (64, 64)
# just noticeable widths based on the perceptual experiments
WIDTH_JNB = np.concatenate([5*np.ones(51), 3*np.ones(205)])
def compute(image):
# type: (numpy.ndarray) -> float
"""Compute the sharpness metric for the given data."""
# convert the image to double for further processing
image = image.astype(np.float64)
# edge detection using canny and sobel canny edge detection is done to
# classify the blocks as edge or non-edge blocks and sobel edge
# detection is done for the purpose of edge width measurement.
from skimage.feature import canny
canny_edges = canny(image)
sobel_edges = sobel(image)
# edge width calculation
marziliano_widths = marziliano_method(sobel_edges, image)
# sharpness metric calculation
return _calculate_sharpness_metric(image, canny_edges, marziliano_widths)
def marziliano_method(edges, image):
# type: (numpy.ndarray, numpy.ndarray) -> numpy.ndarray
"""
Calculate the widths of the given edges.
:return: A matrix with the same dimensions as the given image with 0's at
non-edge locations and edge-widths at the edge locations.
"""
# `edge_widths` consists of zero and non-zero values. A zero value
# indicates that there is no edge at that position and a non-zero value
# indicates that there is an edge at that position and the value itself
# gives the edge width.
edge_widths = np.zeros(image.shape)
# find the gradient for the image
gradient_y, gradient_x = np.gradient(image)
# dimensions of the image
img_height, img_width = image.shape
# holds the angle information of the edges
edge_angles = np.zeros(image.shape)
# calculate the angle of the edges
for row in range(img_height):
for col in range(img_width):
if gradient_x[row, col] != 0:
edge_angles[row, col] = atan2(gradient_y[row, col], gradient_x[row, col]) * (180 / pi)
elif gradient_x[row, col] == 0 and gradient_y[row, col] == 0:
edge_angles[row,col] = 0
elif gradient_x[row, col] == 0 and gradient_y[row, col] == pi/2:
edge_angles[row, col] = 90
if np.any(edge_angles):
# quantize the angle
quantized_angles = 45 * np.round(edge_angles / 45)
for row in range(1, img_height - 1):
for col in range(1, img_width - 1):
if edges[row, col] == 1:
# gradient angle = 180 or -180
if quantized_angles[row, col] == 180 or quantized_angles[row, col] == -180:
for margin in range(100 + 1):
inner_border = (col - 1) - margin
outer_border = (col - 2) - margin
# outside image or intensity increasing from left to right
if outer_border < 0 or (image[row, outer_border] - image[row, inner_border]) <= 0:
break
width_left = margin + 1
for margin in range(100 + 1):
inner_border = (col + 1) + margin
outer_border = (col + 2) + margin
# outside image or intensity increasing from left to right
if outer_border >= img_width or (image[row, outer_border] - image[row, inner_border]) >= 0:
break
width_right = margin + 1
edge_widths[row, col] = width_left + width_right
# gradient angle = 0
if quantized_angles[row, col] == 0:
for margin in range(100 + 1):
inner_border = (col - 1) - margin
outer_border = (col - 2) - margin
# outside image or intensity decreasing from left to right
if outer_border < 0 or (image[row, outer_border] - image[row, inner_border]) >= 0:
break
width_left = margin + 1
for margin in range(100 + 1):
inner_border = (col + 1) + margin
outer_border = (col + 2) + margin
# outside image or intensity decreasing from left to right
if outer_border >= img_width or (image[row, outer_border] - image[row, inner_border]) <= 0:
break
width_right = margin + 1
edge_widths[row, col] = width_right + width_left
return edge_widths
def _calculate_sharpness_metric(image, edges, edge_widths):
# type: (numpy.array, numpy.array, numpy.array) -> numpy.float64
# get the size of image
img_height, img_width = image.shape
total_num_edges = 0
hist_pblur = np.zeros(101)
# maximum block indices
num_blocks_vertically = int(img_height / BLOCK_HEIGHT)
num_blocks_horizontally = int(img_width / BLOCK_WIDTH)
# loop over the blocks
for i in range(num_blocks_vertically):
for j in range(num_blocks_horizontally):
# get the row and col indices for the block pixel positions
rows = slice(BLOCK_HEIGHT * i, BLOCK_HEIGHT * (i + 1))
cols = slice(BLOCK_WIDTH * j, BLOCK_WIDTH * (j + 1))
if is_edge_block(edges[rows, cols], THRESHOLD):
block_widths = edge_widths[rows, cols]
# rotate block to simulate column-major boolean indexing
block_widths = np.rot90(np.flipud(block_widths), 3)
block_widths = block_widths[block_widths != 0]
block_contrast = get_block_contrast(image[rows, cols])
block_jnb = WIDTH_JNB[block_contrast]
# calculate the probability of blur detection at the edges
# detected in the block
prob_blur_detection = 1 - np.exp(-abs(block_widths/block_jnb) ** BETA)
# update the statistics using the block information
for probability in prob_blur_detection:
bucket = int(round(probability * 100))
hist_pblur[bucket] += 1
total_num_edges += 1
# normalize the pdf
if total_num_edges > 0:
hist_pblur = hist_pblur / total_num_edges
# calculate the sharpness metric
return np.sum(hist_pblur[:64])
def is_edge_block(block, threshold):
# type: (numpy.ndarray, float) -> bool
"""Decide whether the given block is an edge block."""
return np.count_nonzero(block) > (block.size * threshold)
def get_block_contrast(block):
# type: (numpy.ndarray) -> int
return int(np.max(block) - np.min(block))
def estimate_sharpness(image):
if image.ndim == 3:
if image.shape[2] > 1:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
image = image[...,0]
return compute(image)
|