File size: 1,931 Bytes
89cf463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np

def umeyama(src, dst, estimate_scale):
    """Estimate N-D similarity transformation with or without scaling.
    Parameters
    ----------
    src : (M, N) array
        Source coordinates.
    dst : (M, N) array
        Destination coordinates.
    estimate_scale : bool
        Whether to estimate scaling factor.
    Returns
    -------
    T : (N + 1, N + 1)
        The homogeneous similarity transformation matrix. The matrix contains
        NaN values only if the problem is not well-conditioned.
    References
    ----------
    .. [1] "Least-squares estimation of transformation parameters between two
            point patterns", Shinji Umeyama, PAMI 1991, DOI: 10.1109/34.88573
    """

    num = src.shape[0]
    dim = src.shape[1]

    # Compute mean of src and dst.
    src_mean = src.mean(axis=0)
    dst_mean = dst.mean(axis=0)

    # Subtract mean from src and dst.
    src_demean = src - src_mean
    dst_demean = dst - dst_mean

    # Eq. (38).
    A = np.dot(dst_demean.T, src_demean) / num

    # Eq. (39).
    d = np.ones((dim,), dtype=np.double)
    if np.linalg.det(A) < 0:
        d[dim - 1] = -1

    T = np.eye(dim + 1, dtype=np.double)

    U, S, V = np.linalg.svd(A)

    # Eq. (40) and (43).
    rank = np.linalg.matrix_rank(A)
    if rank == 0:
        return np.nan * T
    elif rank == dim - 1:
        if np.linalg.det(U) * np.linalg.det(V) > 0:
            T[:dim, :dim] = np.dot(U, V)
        else:
            s = d[dim - 1]
            d[dim - 1] = -1
            T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))
            d[dim - 1] = s
    else:
        T[:dim, :dim] = np.dot(U, np.dot(np.diag(d), V))

    if estimate_scale:
        # Eq. (41) and (42).
        scale = 1.0 / src_demean.var(axis=0).sum() * np.dot(S, d)
    else:
        scale = 1.0

    T[:dim, dim] = dst_mean - scale * np.dot(T[:dim, :dim], src_mean.T)
    T[:dim, :dim] *= scale

    return T