File size: 1,758 Bytes
89cf463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
# -- coding: utf-8 --
# @Time : 2022/11/8
from cv2box import CVImage, MyFpsCounter
from model_lib import ModelBase
import numpy as np
import cv2
MODEL_ZOO = {
'xseg_0611': {
'model_path': './pretrain_models/xseg_230611_16_17.onnx',
'input_dynamic_shape': [[1, 256, 256, 3]]
},
}
class XSEG(ModelBase):
def __init__(self, model_type='xseg_0611', provider='cpu'):
super().__init__(MODEL_ZOO[model_type], provider)
self.model_type = model_type
def forward(self, face_image):
"""
Args:
face_image: cv2 image -1~1 RGB
Returns:
RGB 256x256x3 -1~1
"""
face_image = (face_image + 1) / 2
if face_image.shape[-1] >= 4:
if len(face_image.shape)>3:
face_image = face_image[0]
face_image = face_image.transpose(1, 2, 0)
face_image_h, face_image_w, _ = face_image.shape
if face_image_h != 256:
face_image = cv2.resize(face_image, (256, 256))
image_out = self.model.forward(face_image[...,::-1][None].astype(np.float32))
# print(image_out[0][0].shape)
output_face = (image_out[0].squeeze()).clip(0, 1)
if face_image_h != 256:
output_face = cv2.resize(output_face, (face_image_w, face_image_h))
return output_face
if __name__ == '__main__':
face_img_p = 'data/source/ym-1.jpeg'
fa = XSEG(model_type='xseg_0611', provider='trt16')
face_img = (cv2.resize(cv2.imread(face_img_p)/127.5-1,(512,512)))[...,::-1]
with MyFpsCounter() as mfc:
for i in range(20):
face = fa.forward(face_img)
# CVImage(face, image_format='cv2').save('./xseg.jpg')
#CVImage(face, image_format='cv2').show()
|