|
import cv2 |
|
import numpy as np |
|
|
|
def LinearMotionBlur(image, size, angle): |
|
k = np.zeros((size, size), dtype=np.float32) |
|
k[ (size-1)// 2 , :] = np.ones(size, dtype=np.float32) |
|
k = cv2.warpAffine(k, cv2.getRotationMatrix2D( (size / 2 -0.5 , size / 2 -0.5 ) , angle, 1.0), (size, size) ) |
|
k = k * ( 1.0 / np.sum(k) ) |
|
return cv2.filter2D(image, -1, k) |
|
|
|
def blursharpen (img, sharpen_mode=0, kernel_size=3, amount=100): |
|
if kernel_size % 2 == 0: |
|
kernel_size += 1 |
|
if amount > 0: |
|
if sharpen_mode == 1: |
|
kernel = np.zeros( (kernel_size, kernel_size), dtype=np.float32) |
|
kernel[ kernel_size//2, kernel_size//2] = 1.0 |
|
box_filter = np.ones( (kernel_size, kernel_size), dtype=np.float32) / (kernel_size**2) |
|
kernel = kernel + (kernel - box_filter) * amount |
|
return cv2.filter2D(img, -1, kernel) |
|
elif sharpen_mode == 2: |
|
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0) |
|
img = cv2.addWeighted(img, 1.0 + (0.5 * amount), blur, -(0.5 * amount), 0) |
|
return img |
|
elif amount < 0: |
|
n = -amount |
|
while n > 0: |
|
|
|
img_blur = cv2.medianBlur(img, 5) |
|
if int(n / 10) != 0: |
|
img = img_blur |
|
else: |
|
pass_power = (n % 10) / 10.0 |
|
img = img*(1.0-pass_power)+img_blur*pass_power |
|
n = max(n-10,0) |
|
|
|
return img |
|
return img |