import cv2 import numexpr as ne import numpy as np import scipy as sp from numpy import linalg as npla def color_transfer_sot(src,trg, steps=10, batch_size=5, reg_sigmaXY=16.0, reg_sigmaV=5.0): """ Color Transform via Sliced Optimal Transfer ported by @iperov from https://github.com/dcoeurjo/OTColorTransfer src - any float range any channel image dst - any float range any channel image, same shape as src steps - number of solver steps batch_size - solver batch size reg_sigmaXY - apply regularization and sigmaXY of filter, otherwise set to 0.0 reg_sigmaV - sigmaV of filter return value - clip it manually """ if not np.issubdtype(src.dtype, np.floating): raise ValueError("src value must be float") if not np.issubdtype(trg.dtype, np.floating): raise ValueError("trg value must be float") if len(src.shape) != 3: raise ValueError("src shape must have rank 3 (h,w,c)") if src.shape != trg.shape: raise ValueError("src and trg shapes must be equal") src_dtype = src.dtype h,w,c = src.shape new_src = src.copy() advect = np.empty ( (h*w,c), dtype=src_dtype ) for step in range (steps): advect.fill(0) for batch in range (batch_size): dir = np.random.normal(size=c).astype(src_dtype) dir /= npla.norm(dir) projsource = np.sum( new_src*dir, axis=-1).reshape ((h*w)) projtarget = np.sum( trg*dir, axis=-1).reshape ((h*w)) idSource = np.argsort (projsource) idTarget = np.argsort (projtarget) a = projtarget[idTarget]-projsource[idSource] for i_c in range(c): advect[idSource,i_c] += a * dir[i_c] new_src += advect.reshape( (h,w,c) ) / batch_size if reg_sigmaXY != 0.0: src_diff = new_src-src src_diff_filt = cv2.bilateralFilter (src_diff, 0, reg_sigmaV, reg_sigmaXY ) if len(src_diff_filt.shape) == 2: src_diff_filt = src_diff_filt[...,None] new_src = src + src_diff_filt return new_src def color_transfer_mkl(x0, x1): eps = np.finfo(float).eps h,w,c = x0.shape h1,w1,c1 = x1.shape x0 = x0.reshape ( (h*w,c) ) x1 = x1.reshape ( (h1*w1,c1) ) a = np.cov(x0.T) b = np.cov(x1.T) Da2, Ua = np.linalg.eig(a) Da = np.diag(np.sqrt(Da2.clip(eps, None))) C = np.dot(np.dot(np.dot(np.dot(Da, Ua.T), b), Ua), Da) Dc2, Uc = np.linalg.eig(C) Dc = np.diag(np.sqrt(Dc2.clip(eps, None))) Da_inv = np.diag(1./(np.diag(Da))) t = np.dot(np.dot(np.dot(np.dot(np.dot(np.dot(Ua, Da_inv), Uc), Dc), Uc.T), Da_inv), Ua.T) mx0 = np.mean(x0, axis=0) mx1 = np.mean(x1, axis=0) result = np.dot(x0-mx0, t) + mx1 return np.clip ( result.reshape ( (h,w,c) ).astype(x0.dtype), 0, 1) def color_transfer_idt(i0, i1, bins=256, n_rot=20): import scipy.stats relaxation = 1 / n_rot h,w,c = i0.shape h1,w1,c1 = i1.shape i0 = i0.reshape ( (h*w,c) ) i1 = i1.reshape ( (h1*w1,c1) ) n_dims = c d0 = i0.T d1 = i1.T for i in range(n_rot): r = sp.stats.special_ortho_group.rvs(n_dims).astype(np.float32) d0r = np.dot(r, d0) d1r = np.dot(r, d1) d_r = np.empty_like(d0) for j in range(n_dims): lo = min(d0r[j].min(), d1r[j].min()) hi = max(d0r[j].max(), d1r[j].max()) p0r, edges = np.histogram(d0r[j], bins=bins, range=[lo, hi]) p1r, _ = np.histogram(d1r[j], bins=bins, range=[lo, hi]) cp0r = p0r.cumsum().astype(np.float32) cp0r /= cp0r[-1] cp1r = p1r.cumsum().astype(np.float32) cp1r /= cp1r[-1] f = np.interp(cp0r, cp1r, edges[1:]) d_r[j] = np.interp(d0r[j], edges[1:], f, left=0, right=bins) d0 = relaxation * np.linalg.solve(r, (d_r - d0r)) + d0 return np.clip ( d0.T.reshape ( (h,w,c) ).astype(i0.dtype) , 0, 1) def reinhard_color_transfer(target : np.ndarray, source : np.ndarray, target_mask : np.ndarray = None, source_mask : np.ndarray = None, mask_cutoff=0.5) -> np.ndarray: """ Transfer color using rct method. target np.ndarray H W 3C (BGR) np.float32 source np.ndarray H W 3C (BGR) np.float32 target_mask(None) np.ndarray H W 1C np.float32 source_mask(None) np.ndarray H W 1C np.float32 mask_cutoff(0.5) float masks are used to limit the space where color statistics will be computed to adjust the target reference: Color Transfer between Images https://www.cs.tau.ac.il/~turkel/imagepapers/ColorTransfer.pdf """ source = cv2.cvtColor(source, cv2.COLOR_BGR2LAB) target = cv2.cvtColor(target, cv2.COLOR_BGR2LAB) source_input = source if source_mask is not None: source_input = source_input.copy() source_input[source_mask[...,0] < mask_cutoff] = [0,0,0] target_input = target if target_mask is not None: target_input = target_input.copy() target_input[target_mask[...,0] < mask_cutoff] = [0,0,0] target_l_mean, target_l_std, target_a_mean, target_a_std, target_b_mean, target_b_std, \ = target_input[...,0].mean(), target_input[...,0].std(), target_input[...,1].mean(), target_input[...,1].std(), target_input[...,2].mean(), target_input[...,2].std() source_l_mean, source_l_std, source_a_mean, source_a_std, source_b_mean, source_b_std, \ = source_input[...,0].mean(), source_input[...,0].std(), source_input[...,1].mean(), source_input[...,1].std(), source_input[...,2].mean(), source_input[...,2].std() # not as in the paper: scale by the standard deviations using reciprocal of paper proposed factor target_l = target[...,0] target_l = ne.evaluate('(target_l - target_l_mean) * source_l_std / target_l_std + source_l_mean') target_a = target[...,1] target_a = ne.evaluate('(target_a - target_a_mean) * source_a_std / target_a_std + source_a_mean') target_b = target[...,2] target_b = ne.evaluate('(target_b - target_b_mean) * source_b_std / target_b_std + source_b_mean') np.clip(target_l, 0, 100, out=target_l) np.clip(target_a, -127, 127, out=target_a) np.clip(target_b, -127, 127, out=target_b) return cv2.cvtColor(np.stack([target_l,target_a,target_b], -1), cv2.COLOR_LAB2BGR) def linear_color_transfer(target_img, source_img, mode='pca', eps=1e-5): ''' Matches the colour distribution of the target image to that of the source image using a linear transform. Images are expected to be of form (w,h,c) and float in [0,1]. Modes are chol, pca or sym for different choices of basis. ''' mu_t = target_img.mean(0).mean(0) t = target_img - mu_t t = t.transpose(2,0,1).reshape( t.shape[-1],-1) t = t.reshape( t.shape[-1],-1) Ct = t.dot(t.T) / t.shape[1] + eps * np.eye(t.shape[0]) mu_s = source_img.mean(0).mean(0) s = source_img - mu_s s = s.transpose(2,0,1).reshape( s.shape[-1],-1) Cs = s.dot(s.T) / s.shape[1] + eps * np.eye(s.shape[0]) if mode == 'chol': chol_t = np.linalg.cholesky(Ct) chol_s = np.linalg.cholesky(Cs) ts = chol_s.dot(np.linalg.inv(chol_t)).dot(t) if mode == 'pca': eva_t, eve_t = np.linalg.eigh(Ct) Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T) eva_s, eve_s = np.linalg.eigh(Cs) Qs = eve_s.dot(np.sqrt(np.diag(eva_s))).dot(eve_s.T) ts = Qs.dot(np.linalg.inv(Qt)).dot(t) if mode == 'sym': eva_t, eve_t = np.linalg.eigh(Ct) Qt = eve_t.dot(np.sqrt(np.diag(eva_t))).dot(eve_t.T) Qt_Cs_Qt = Qt.dot(Cs).dot(Qt) eva_QtCsQt, eve_QtCsQt = np.linalg.eigh(Qt_Cs_Qt) QtCsQt = eve_QtCsQt.dot(np.sqrt(np.diag(eva_QtCsQt))).dot(eve_QtCsQt.T) ts = np.linalg.inv(Qt).dot(QtCsQt).dot(np.linalg.inv(Qt)).dot(t) matched_img = ts.reshape(*target_img.transpose(2,0,1).shape).transpose(1,2,0) matched_img += mu_s matched_img[matched_img>1] = 1 matched_img[matched_img<0] = 0 return np.clip(matched_img.astype(source_img.dtype), 0, 1) def lab_image_stats(image): # compute the mean and standard deviation of each channel (l, a, b) = cv2.split(image) (lMean, lStd) = (l.mean(), l.std()) (aMean, aStd) = (a.mean(), a.std()) (bMean, bStd) = (b.mean(), b.std()) # return the color statistics return (lMean, lStd, aMean, aStd, bMean, bStd) def _scale_array(arr, clip=True): if clip: return np.clip(arr, 0, 255) mn = arr.min() mx = arr.max() scale_range = (max([mn, 0]), min([mx, 255])) if mn < scale_range[0] or mx > scale_range[1]: return (scale_range[1] - scale_range[0]) * (arr - mn) / (mx - mn) + scale_range[0] return arr def channel_hist_match(source, template, hist_match_threshold=255, mask=None): # Code borrowed from: # https://stackoverflow.com/questions/32655686/histogram-matching-of-two-images-in-python-2-x masked_source = source masked_template = template if mask is not None: masked_source = source * mask masked_template = template * mask oldshape = source.shape source = source.ravel() template = template.ravel() masked_source = masked_source.ravel() masked_template = masked_template.ravel() s_values, bin_idx, s_counts = np.unique(source, return_inverse=True, return_counts=True) t_values, t_counts = np.unique(template, return_counts=True) s_quantiles = np.cumsum(s_counts).astype(np.float64) s_quantiles = hist_match_threshold * s_quantiles / s_quantiles[-1] t_quantiles = np.cumsum(t_counts).astype(np.float64) t_quantiles = 255 * t_quantiles / t_quantiles[-1] interp_t_values = np.interp(s_quantiles, t_quantiles, t_values) return interp_t_values[bin_idx].reshape(oldshape) def color_hist_match(src_im, tar_im, hist_match_threshold=255): h,w,c = src_im.shape matched_R = channel_hist_match(src_im[:,:,0], tar_im[:,:,0], hist_match_threshold, None) matched_G = channel_hist_match(src_im[:,:,1], tar_im[:,:,1], hist_match_threshold, None) matched_B = channel_hist_match(src_im[:,:,2], tar_im[:,:,2], hist_match_threshold, None) to_stack = (matched_R, matched_G, matched_B) for i in range(3, c): to_stack += ( src_im[:,:,i],) matched = np.stack(to_stack, axis=-1).astype(src_im.dtype) return matched def color_transfer_mix(img_src,img_trg): img_src = np.clip(img_src*255.0, 0, 255).astype(np.uint8) img_trg = np.clip(img_trg*255.0, 0, 255).astype(np.uint8) img_src_lab = cv2.cvtColor(img_src, cv2.COLOR_BGR2LAB) img_trg_lab = cv2.cvtColor(img_trg, cv2.COLOR_BGR2LAB) rct_light = np.clip ( linear_color_transfer(img_src_lab[...,0:1].astype(np.float32)/255.0, img_trg_lab[...,0:1].astype(np.float32)/255.0 )[...,0]*255.0, 0, 255).astype(np.uint8) img_src_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8) img_src_lab = cv2.cvtColor(img_src_lab, cv2.COLOR_LAB2BGR) img_trg_lab[...,0] = (np.ones_like (rct_light)*100).astype(np.uint8) img_trg_lab = cv2.cvtColor(img_trg_lab, cv2.COLOR_LAB2BGR) img_rct = color_transfer_sot( img_src_lab.astype(np.float32), img_trg_lab.astype(np.float32) ) img_rct = np.clip(img_rct, 0, 255).astype(np.uint8) img_rct = cv2.cvtColor(img_rct, cv2.COLOR_BGR2LAB) img_rct[...,0] = rct_light img_rct = cv2.cvtColor(img_rct, cv2.COLOR_LAB2BGR) return (img_rct / 255.0).astype(np.float32) def color_transfer(ct_mode, img_src, img_trg): """ color transfer for [0,1] float32 inputs """ if ct_mode == 'lct': out = linear_color_transfer(img_src, img_trg) elif ct_mode == 'rct': out = reinhard_color_transfer(img_src, img_trg) elif ct_mode == 'mkl': out = color_transfer_mkl(img_src, img_trg) elif ct_mode == 'idt': out = color_transfer_idt(img_src, img_trg) elif ct_mode == 'sot': out = color_transfer_sot(img_src, img_trg) out = np.clip( out, 0.0, 1.0) else: raise ValueError(f"unknown ct_mode {ct_mode}") return out