--- library_name: peft tags: - generated_from_trainer datasets: - GuilhermeNaturaUmana/Reasoning-deepseek base_model: nicoboss/Hermes-3-Llama-3.1-405B-Uncensored model-index: - name: workspace/data/Hermes-3-Llama-3.1-405B-Uncensored-Reasoner results: [] --- Yes, its fine we have finally AGI Lora at home AGI internally achieved confirmed lol(and now public) now besides joke, this is an model made to reason, i didnt made the benchmark yet, but its gonna or be comparable to deepseek R1 or surpasses it! (the merged model is on the works and its gonna be released today!) -------------- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: /root/Hermes-3-Llama-3.1-405B-Uncensored tokenizer_type: AutoTokenizer load_in_4bit: true strict: false datasets: - path: GuilhermeNaturaUmana/Reasoning-deepseek type: chat_template chat_template: llama3 field_messages: messages message_field_role: role message_field_content: content roles: system: - system user: - user assistant: - assistant dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: /workspace/data/Hermes-3-Llama-3.1-405B-Uncensored-Reasoner save_safetensors: true adapter: qlora sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: true tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true logging_steps: 1 flash_attention: true warmup_steps: 10 evals_per_epoch: 6 saves_per_epoch: 6 save_total_limit: 20 weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|finetune_right_pad_id|> ```

# workspace/data/Hermes-3-Llama-3.1-405B-Uncensored-Reasoner This model was trained from scratch on the GuilhermeNaturaUmana/Reasoning-deepseek dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 4 - total_train_batch_size: 12 - total_eval_batch_size: 3 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results ### Framework versions - PEFT 0.14.0 - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0