File size: 14,374 Bytes
07e05e7
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param sde_net_arch: Network architecture for extracting features\n        when using gSDE. If None, the latent features from the policy will be used.\n        Pass an empty list to use the states as features.\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd409136d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd409136dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd409136e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd409136ef0>", "_build": "<function ActorCriticPolicy._build at 0x7fd409136f80>", "forward": "<function ActorCriticPolicy.forward at 0x7fd40913b050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd40913b0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd40913b170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd40913b200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd40913b290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd40913b320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd409175e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651680651.8870425, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYf673AJ4w/3FURvkMCrb6LmTG9Fm3+PAAAAAAAAAAAjfs5vl5hCD/i4lw9ZhqYvgIUJ7uaxvC9AAAAAAAAAAB6IiA+cflpOqWJUjuND4U4Mo5mO0ra+LkAAIA/AACAPzOgyz1SUMC5u+xXu0OHbzjlSkS6DvnwOQAAgD8AAIA/IBZhPqVQmT6njYy+jDeBvr9QxbyQXpO9AAAAAAAAAAAA5yc9XBs5uu7oIrmRJ1a0AprgucoAPDgAAIA/AACAPzMomj1SsLG5vd+Nu6ZOwjhMiB+6B8gYOgAAgD8AAIA/WryIPdI2n7v6wkI7tgujPAip2LyO9Yk9AACAPwAAgD/N+LY8KUBGuqXM3jl1MJE0sjQhOqM4/7gAAIA/AACAP8Aerz24bvi5E39augYycLW2E+w6AuN8OQAAgD8AAIA/ACIYvI9CE7pskMQ6ACNHNSNwnTvID+W5AACAPwAAgD+zoKS9wwlZukrhZ7rpN5S1G6KJOha8hTkAAAAAAACAP0baiL6jZ24/ZWY3PrQatL5h1NW+BKKKPgAAAAAAAAAAU1waPg9VLT9YaC+8mvdXvlwFkztjYCQ9AAAAAAAAAACaxq+9flbWPWOScT3/xU6+K1MMPhaGm70AAAAAAAAAAHqPFb7sZ/e7T9EovB+LjDwVqVk97XJrvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn6wYrg7OQECUhpRSlIwBbJRLx4wBdJRHQH8zeCPIXCV1fZQoaAZoCWgPQwgR4PQuXtRgQJSGlFKUaBVN6ANoFkdAfz2QC0WuYHV9lChoBmgJaA9DCA5KmGn7gGFAlIaUUpRoFU3oA2gWR0B/Vf1oQFs6dX2UKGgGaAloD0MIeoocIm6JXECUhpRSlGgVTegDaBZHQH9f5u/Dcdp1fZQoaAZoCWgPQwig/rPmxyZbQJSGlFKUaBVN6ANoFkdAf4M6JIlMRHV9lChoBmgJaA9DCCxkrgyqrQPAlIaUUpRoFUvZaBZHQH+U5gb6xgR1fZQoaAZoCWgPQwhcc0f/y20/QJSGlFKUaBVLymgWR0B/moZhrnDBdX2UKGgGaAloD0MI007N5QaDV8CUhpRSlGgVTVABaBZHQH+eT/hl18t1fZQoaAZoCWgPQwhHAaJgRq5iQJSGlFKUaBVN6ANoFkdAf6sirDIiknV9lChoBmgJaA9DCG8tk+H4g2LAlIaUUpRoFU2tAWgWR0B/rcQZn+Q2dX2UKGgGaAloD0MI7fXuj3duY0CUhpRSlGgVTegDaBZHQH/EohY/3WZ1fZQoaAZoCWgPQwhssdtnlShdQJSGlFKUaBVN6ANoFkdAgAioXbdrPHV9lChoBmgJaA9DCNWvdD48C1dAlIaUUpRoFU3oA2gWR0CADdCyhSLqdX2UKGgGaAloD0MIRs7CnnbgW0CUhpRSlGgVTegDaBZHQIAPkkQf6oF1fZQoaAZoCWgPQwiGAraDEZJgQJSGlFKUaBVN6ANoFkdAgB23Him2s3V9lChoBmgJaA9DCD6Skh6GBmVAlIaUUpRoFU3oA2gWR0CAI1rftQbddX2UKGgGaAloD0MIbvdynxzhX0CUhpRSlGgVTegDaBZHQIAkiXMQmNR1fZQoaAZoCWgPQwjMJsCwfK9jQJSGlFKUaBVN6ANoFkdAgCyJ/PPcBXV9lChoBmgJaA9DCAHg2LPnhV9AlIaUUpRoFU3oA2gWR0CALppJPIn0dX2UKGgGaAloD0MICqNZ2T5uYkCUhpRSlGgVTegDaBZHQIA1xcqvvBt1fZQoaAZoCWgPQwhmn8coz4Q3QJSGlFKUaBVL7GgWR0CASeuanaWYdX2UKGgGaAloD0MI0/iFVxIVYUCUhpRSlGgVTegDaBZHQIBlN4Pf8/F1fZQoaAZoCWgPQwio5Qeu8gpdQJSGlFKUaBVN6ANoFkdAgG1of8uSOnV9lChoBmgJaA9DCCJPkq4ZFmFAlIaUUpRoFU3oA2gWR0CAb++6iCardX2UKGgGaAloD0MIhWBVvfyiXkCUhpRSlGgVTegDaBZHQIBxmo1k1/F1fZQoaAZoCWgPQwia0CSxpPxYQJSGlFKUaBVN6ANoFkdAgHdQpvxYrHV9lChoBmgJaA9DCGO3zyoz2VtAlIaUUpRoFU3oA2gWR0CAeIc7QswtdX2UKGgGaAloD0MIuXL2zmgMYkCUhpRSlGgVTegDaBZHQICCV1GLDQ91fZQoaAZoCWgPQwhvnBTmPShRQJSGlFKUaBVN6ANoFkdAgIRAyuZCwHV9lChoBmgJaA9DCAXfNH12umFAlIaUUpRoFU3oA2gWR0CArLw5vLowdX2UKGgGaAloD0MIayv2l11bZUCUhpRSlGgVTegDaBZHQICuStaIN3J1fZQoaAZoCWgPQwg/5Zgs7hFjQJSGlFKUaBVN6ANoFkdAgLqopx3mm3V9lChoBmgJaA9DCNhJfVnammFAlIaUUpRoFU3oA2gWR0CAv+A3DNyHdX2UKGgGaAloD0MIuhEWFXGlUUCUhpRSlGgVTegDaBZHQIDBA/oq0+l1fZQoaAZoCWgPQwihaB7AIpNaQJSGlFKUaBVN6ANoFkdAgMigksz2vnV9lChoBmgJaA9DCHKJIw9Er11AlIaUUpRoFU3oA2gWR0CA0kB+WnjydX2UKGgGaAloD0MIN1FLcyv6W0CUhpRSlGgVTegDaBZHQIDph4nndO91fZQoaAZoCWgPQwgn2lVIefZhQJSGlFKUaBVN6ANoFkdAgQkCudPLxXV9lChoBmgJaA9DCJsAw/JnKWBAlIaUUpRoFU3oA2gWR0CBEtyyUs4DdX2UKGgGaAloD0MIC2E1ljDXYkCUhpRSlGgVTegDaBZHQIEVszwc5sF1fZQoaAZoCWgPQwiWCFT/oEZjQJSGlFKUaBVN6ANoFkdAgReUvoNd7nV9lChoBmgJaA9DCE9ZTdeTAGNAlIaUUpRoFU3oA2gWR0CBHkr3j+72dX2UKGgGaAloD0MIfJ4/bdS8ZUCUhpRSlGgVTegDaBZHQIEfqvNeMQ51fZQoaAZoCWgPQwhselBQiv1ZQJSGlFKUaBVN6ANoFkdAgSr/xDst03V9lChoBmgJaA9DCK2GxD2WZ11AlIaUUpRoFU3oA2gWR0CBLRD4xk/bdX2UKGgGaAloD0MIWFhwP2BvYECUhpRSlGgVTegDaBZHQIEx9orWiDd1fZQoaAZoCWgPQwhr8/+qIwBjQJSGlFKUaBVN6ANoFkdAgVe/eUILPXV9lChoBmgJaA9DCO4jtybdZkLAlIaUUpRoFU0NAWgWR0CBYgvAXVLBdX2UKGgGaAloD0MI6GfqdYstYkCUhpRSlGgVTegDaBZHQIFj8gSvkil1fZQoaAZoCWgPQwgwnkFD/6RZQJSGlFKUaBVN6ANoFkdAgWjSG8EmpnV9lChoBmgJaA9DCBpTsMbZT2JAlIaUUpRoFU3oA2gWR0CBaeipvP1MdX2UKGgGaAloD0MIsrj/yPTIYECUhpRSlGgVTegDaBZHQIFxMaCL/CJ1fZQoaAZoCWgPQwjnxB7ax7pHQJSGlFKUaBVL8mgWR0CBcf2ovSMMdX2UKGgGaAloD0MIOZ1kq8uwVECUhpRSlGgVTegDaBZHQIF5mGsV+JB1fZQoaAZoCWgPQwhW0opvqEdkQJSGlFKUaBVN6ANoFkdAgYzVWjoIOnV9lChoBmgJaA9DCNgqweLwEmlAlIaUUpRoFU1ZA2gWR0CBn14oJAt4dX2UKGgGaAloD0MIQplGkwvoYUCUhpRSlGgVTegDaBZHQIGntKqXF991fZQoaAZoCWgPQwgNOEvJcpL8P5SGlFKUaBVL6WgWR0CBrFDfm9xqdX2UKGgGaAloD0MIVWthFlpXZkCUhpRSlGgVTegDaBZHQIGwH80k4WF1fZQoaAZoCWgPQwjul09WDFpbQJSGlFKUaBVN6ANoFkdAgbQJRwZOz3V9lChoBmgJaA9DCBdlNsgkj1NAlIaUUpRoFU3oA2gWR0CBuom2sq8UdX2UKGgGaAloD0MIQ61p3nHyJECUhpRSlGgVS/toFkdAgb9svZh8Y3V9lChoBmgJaA9DCAgB+RIqLV9AlIaUUpRoFU3oA2gWR0CBxWeFL39KdX2UKGgGaAloD0MIVTGVfsIxQUCUhpRSlGgVS/RoFkdAgcYQbVBlc3V9lChoBmgJaA9DCAM+P4wQFF9AlIaUUpRoFU3oA2gWR0CBx04YrJ8wdX2UKGgGaAloD0MIF7ZmKy8PY0CUhpRSlGgVTegDaBZHQIHLcWykbgl1fZQoaAZoCWgPQwgCZylZTsILwJSGlFKUaBVL4GgWR0CBzWjB2wFDdX2UKGgGaAloD0MIYVJ8fELCZUCUhpRSlGgVTegDaBZHQIH7WtwJgLJ1fZQoaAZoCWgPQwiqKck6nNJhQJSGlFKUaBVN6ANoFkdAgf0/6XSjQHV9lChoBmgJaA9DCHBCIQIOIes/lIaUUpRoFUvgaBZHQIIBlNL127p1fZQoaAZoCWgPQwiaPjvgurFeQJSGlFKUaBVN6ANoFkdAggJbxd6cAnV9lChoBmgJaA9DCIxNK4VAx2JAlIaUUpRoFU3oA2gWR0CCA1HXEqDsdX2UKGgGaAloD0MIfxZLkfxQY0CUhpRSlGgVTegDaBZHQIIKIREnb7F1fZQoaAZoCWgPQwjysFBrmidXQJSGlFKUaBVN6ANoFkdAggrQd0aIe3V9lChoBmgJaA9DCOc24V6ZwWVAlIaUUpRoFU3oA2gWR0CCEe5myxA0dX2UKGgGaAloD0MIbeF5qdiAYUCUhpRSlGgVTegDaBZHQIJL3O8kD6p1fZQoaAZoCWgPQwiF6ubib+NYQJSGlFKUaBVN6ANoFkdAglA8Udq+J3V9lChoBmgJaA9DCDGale3DxGBAlIaUUpRoFU3oA2gWR0CCXXyWAwwkdX2UKGgGaAloD0MIiLmkarsEYUCUhpRSlGgVTegDaBZHQIJjMTxoZht1fZQoaAZoCWgPQwjT25+Lhr1gQJSGlFKUaBVN6ANoFkdAgmrW/zreInV9lChoBmgJaA9DCGJO0CaHo2FAlIaUUpRoFU3oA2gWR0CCbE1XNke7dX2UKGgGaAloD0MIF4IclLAFY0CUhpRSlGgVTegDaBZHQIJyJ7b+Lm91fZQoaAZoCWgPQwgVNgNckB9kQJSGlFKUaBVN6ANoFkdAgnSXR5TqB3V9lChoBmgJaA9DCKuxhLWxKGFAlIaUUpRoFU3oA2gWR0CCpC83++/QdX2UKGgGaAloD0MI9iaG5GT5YECUhpRSlGgVTegDaBZHQIKmeSW7e2x1fZQoaAZoCWgPQwjxZDczekVjQJSGlFKUaBVN6ANoFkdAgqq+CsfaH3V9lChoBmgJaA9DCMHmHDwTgktAlIaUUpRoFU3oA2gWR0CCq4x1PnB+dX2UKGgGaAloD0MIAoQPJdpXYUCUhpRSlGgVTegDaBZHQIKsmPzWf9R1fZQoaAZoCWgPQwh1IsFUM2NaQJSGlFKUaBVN6ANoFkdAgrN3XAdn03V9lChoBmgJaA9DCGIQWDm04lxAlIaUUpRoFU3oA2gWR0CCtCvAXVLBdX2UKGgGaAloD0MIEarU7IG6YUCUhpRSlGgVTegDaBZHQIK7ppUPxx11fZQoaAZoCWgPQwgeiCzSxAsxwJSGlFKUaBVL6mgWR0CCza/WUbDNdX2UKGgGaAloD0MIeHsQAvKDYUCUhpRSlGgVTegDaBZHQILxeGIsRQJ1fZQoaAZoCWgPQwgRVmMJ60tjQJSGlFKUaBVN6ANoFkdAgvU0d7v5QHV9lChoBmgJaA9DCFhxqrWwxGRAlIaUUpRoFU3oA2gWR0CDAUApazNVdX2UKGgGaAloD0MI007N5QbDWUCUhpRSlGgVTegDaBZHQIMGYeNkvsZ1fZQoaAZoCWgPQwjmkqrtJthkQJSGlFKUaBVN6ANoFkdAgw2Ef1YhdXV9lChoBmgJaA9DCDQw8rImhmNAlIaUUpRoFU3oA2gWR0CDDvrqMWGidX2UKGgGaAloD0MIuf/IdOhCXkCUhpRSlGgVTegDaBZHQIMUDj94u9R1fZQoaAZoCWgPQwgB4NizZz1iQJSGlFKUaBVN6ANoFkdAgxZOiN83M3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}