Guizmus commited on
Commit
157bb7e
·
1 Parent(s): 9c0c25c

Upload 2 files

Browse files
Files changed (2) hide show
  1. README.md +101 -0
  2. dataset.zip +3 -0
README.md ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: creativeml-openrail-m
5
+ thumbnail: "https://huggingface.co/Guizmus/SDArt_Encapsulated/resolve/main/showcase.jpg"
6
+ tags:
7
+ - stable-diffusion
8
+ - text-to-image
9
+ - image-to-image
10
+ ---
11
+ # SDArt : Encapsulated (version based on 1.5)
12
+
13
+ ![Showcase](https://huggingface.co/Guizmus/SDArt_Encapsulated/resolve/main/showcase.jpg)
14
+
15
+ ## Theme
16
+
17
+ What if the world was in the palm of your hands? Condensed, contained, and captured within a simple sphere for all to see?
18
+
19
+ * Create your own world encapsulated within an orb, sphere, container etc. This can be any type of world or landscape you can imagine, but it must be confined within the boundaries of the orb.
20
+ * Bring your miniature world to life. Big things come in small packages!
21
+ * A world made of crystals and moss? A lush forest landscape? An upside-down world? A world made of instruments? A world made of tangled wires? Be creative! Be uniquely you!
22
+
23
+
24
+ ## Model description
25
+
26
+ This is a model related to the "Picture of the Week" contest on [Stable Diffusion discord](https://discord.gg/stablediffusion).
27
+
28
+ I try to make a model out of all the submission for people to continue enjoy the theme after the even, and see a little of their designs in other people's creations. The token stays "SDArt" and I balance the learning on the low side, so that it doesn't just replicate creations.
29
+
30
+ The total dataset is made of 36 pictures. It was trained on [Stable diffusion 1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5). I used [EveryDream](https://github.com/victorchall/EveryDream2trainer) to do the training, 100 total repeat per picture. The pictures were tagged using the token "SDArt", and an arbitrary token I choose. The dataset is provided below, as well as a list of usernames and their corresponding token.
31
+
32
+ The recommended sampling is k_Euler_a or DPM++ 2M Karras on 20 steps, CFGS 7.5 .
33
+
34
+ ## Trained tokens
35
+
36
+ * SDArt
37
+ * bnp
38
+ * aten
39
+ * fcu
40
+ * cous
41
+ * aved
42
+ * arum
43
+ * omd
44
+ * kuro
45
+ * asot
46
+ * psst
47
+ * buon
48
+ * utm
49
+ * vaw
50
+ * mss
51
+ * guin
52
+ * mgt
53
+ * crit
54
+ * isch
55
+ * phol
56
+ * vedi
57
+ * dds
58
+ * acu
59
+ * pte
60
+ * oxi
61
+ * rean
62
+ * reba
63
+ * reem
64
+ * revs
65
+ * rith
66
+ * rmb
67
+ * rolf
68
+ * ront
69
+ * rps
70
+ * rsc
71
+ * gare
72
+ * shld
73
+
74
+ ## Download links
75
+
76
+ [SafeTensors](https://huggingface.co/Guizmus/SDArt_Encapsulated/resolve/main/SDArt_Encapsulated.safetensors)
77
+
78
+ [CKPT](https://huggingface.co/Guizmus/SDArt_Encapsulated/resolve/main/SDArt_Encapsulated.ckpt)
79
+
80
+ [Dataset](https://huggingface.co/Guizmus/SDArt_Encapsulated/resolve/main/dataset.zip)
81
+
82
+ ## 🧨 Diffusers
83
+
84
+ This model can be used just like any other Stable Diffusion model. For more information,
85
+ please have a look at the [Stable Diffusion](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion).
86
+
87
+ You can also export the model to [ONNX](https://huggingface.co/docs/diffusers/optimization/onnx), [MPS](https://huggingface.co/docs/diffusers/optimization/mps) and/or [FLAX/JAX]().
88
+
89
+ ```python
90
+ from diffusers import StableDiffusionPipeline
91
+ import torch
92
+
93
+ model_id = "Guizmus/SDArt_Encapsulated"
94
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
95
+ pipe = pipe.to("cuda")
96
+
97
+ prompt = "SDArt vedi"
98
+ image = pipe(prompt).images[0]
99
+
100
+ image.save("./SDArt.png")
101
+ ```
dataset.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4de8460d821853ba3c8832b6efcf4c51fa0af688be68bc6cb29064017ac5a984
3
+ size 11930105