--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E10_freq results: [] --- # wav2vec2-1b-E10_freq This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5460 - Cer: 14.6793 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 9.6681 | 0.2580 | 200 | 3.0566 | 61.6424 | | 1.8046 | 0.5160 | 400 | 2.0731 | 44.9601 | | 1.3046 | 0.7741 | 600 | 1.4756 | 36.8832 | | 1.1537 | 1.0321 | 800 | 1.3063 | 32.3484 | | 0.9218 | 1.2901 | 1000 | 1.0777 | 26.4215 | | 0.8464 | 1.5481 | 1200 | 1.0670 | 27.6081 | | 0.7727 | 1.8062 | 1400 | 0.9148 | 23.2906 | | 0.6984 | 2.0642 | 1600 | 0.9548 | 24.3832 | | 0.5856 | 2.3222 | 1800 | 0.9348 | 23.2965 | | 0.5365 | 2.5802 | 2000 | 0.8671 | 22.4213 | | 0.5223 | 2.8383 | 2200 | 0.8267 | 20.7766 | | 0.4623 | 3.0963 | 2400 | 0.7185 | 18.1450 | | 0.3774 | 3.3543 | 2600 | 0.7324 | 19.4784 | | 0.3467 | 3.6123 | 2800 | 0.6037 | 15.8012 | | 0.3195 | 3.8703 | 3000 | 0.6357 | 16.4767 | | 0.2759 | 4.1284 | 3200 | 0.6200 | 16.5237 | | 0.2241 | 4.3864 | 3400 | 0.5901 | 15.4781 | | 0.2211 | 4.6444 | 3600 | 0.5591 | 14.9436 | | 0.2087 | 4.9024 | 3800 | 0.5460 | 14.6793 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1