--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E30_freq results: [] --- # wav2vec2-1b-E30_freq This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4977 - Cer: 13.7277 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 13.4278 | 0.2580 | 200 | 4.0083 | 87.1123 | | 2.1559 | 0.5160 | 400 | 1.8970 | 40.9833 | | 1.3277 | 0.7741 | 600 | 1.2101 | 31.0620 | | 1.162 | 1.0321 | 800 | 1.0824 | 26.5096 | | 0.9949 | 1.2901 | 1000 | 0.9657 | 24.2246 | | 0.9109 | 1.5481 | 1200 | 1.0152 | 24.8414 | | 0.8943 | 1.8062 | 1400 | 0.8544 | 21.7869 | | 0.7895 | 2.0642 | 1600 | 0.9202 | 22.9617 | | 0.6679 | 2.3222 | 1800 | 0.9574 | 24.1835 | | 0.6296 | 2.5802 | 2000 | 0.7541 | 19.2199 | | 0.6245 | 2.8383 | 2200 | 0.7259 | 19.2728 | | 0.5656 | 3.0963 | 2400 | 0.6447 | 17.3344 | | 0.4821 | 3.3543 | 2600 | 0.6489 | 16.9878 | | 0.4513 | 3.6123 | 2800 | 0.6556 | 17.5282 | | 0.4285 | 3.8703 | 3000 | 0.6180 | 16.7234 | | 0.374 | 4.1284 | 3200 | 0.5651 | 15.2314 | | 0.3375 | 4.3864 | 3400 | 0.5135 | 13.8275 | | 0.3158 | 4.6444 | 3600 | 0.4945 | 13.7688 | | 0.2897 | 4.9024 | 3800 | 0.4977 | 13.7277 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1