--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-1b tags: - generated_from_trainer model-index: - name: wav2vec2-1b-E30_speed results: [] --- # wav2vec2-1b-E30_speed This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5758 - Cer: 14.7028 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 16.6326 | 0.2580 | 200 | 4.7434 | 100.0 | | 4.6388 | 0.5160 | 400 | 3.9414 | 88.5926 | | 2.026 | 0.7741 | 600 | 1.7935 | 41.2711 | | 1.1754 | 1.0321 | 800 | 1.2455 | 29.8990 | | 0.8337 | 1.2901 | 1000 | 1.0037 | 25.8047 | | 0.7399 | 1.5481 | 1200 | 0.9414 | 23.3846 | | 0.6535 | 1.8062 | 1400 | 0.8053 | 21.4344 | | 0.544 | 2.0642 | 1600 | 0.9218 | 23.1673 | | 0.4264 | 2.3222 | 1800 | 0.8181 | 20.7354 | | 0.387 | 2.5802 | 2000 | 0.7663 | 19.5900 | | 0.3623 | 2.8383 | 2200 | 0.7863 | 20.2420 | | 0.3416 | 3.0963 | 2400 | 0.8668 | 22.5975 | | 0.2731 | 3.3543 | 2600 | 0.7251 | 18.6501 | | 0.2394 | 3.6123 | 2800 | 0.6185 | 16.2183 | | 0.2255 | 3.8703 | 3000 | 0.5926 | 15.5839 | | 0.1874 | 4.1284 | 3200 | 0.5889 | 15.3900 | | 0.1549 | 4.3864 | 3400 | 0.5765 | 15.1375 | | 0.1514 | 4.6444 | 3600 | 0.5856 | 14.8614 | | 0.1424 | 4.9024 | 3800 | 0.5758 | 14.7028 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.3.1.post100 - Datasets 2.19.1 - Tokenizers 0.20.1