File size: 2,650 Bytes
4890a35
 
d4c525b
 
 
 
 
 
 
4890a35
 
d4c525b
 
4890a35
d4c525b
4890a35
d4c525b
 
 
 
4890a35
d4c525b
4890a35
d4c525b
4890a35
d4c525b
4890a35
d4c525b
4890a35
d4c525b
4890a35
d4c525b
4890a35
d4c525b
4890a35
d4c525b
4890a35
d4c525b
 
 
 
 
 
 
 
 
 
 
 
4890a35
d4c525b
4890a35
d4c525b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4890a35
 
d4c525b
4890a35
d4c525b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-1b
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-1b-Yfreq_pause
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-1b-Yfreq_pause

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2859
- Cer: 33.4880

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 12.7189       | 0.2580 | 200  | 4.6447          | 97.3156 |
| 3.4682        | 0.5160 | 400  | 2.9509          | 67.6574 |
| 1.7355        | 0.7741 | 600  | 2.5755          | 56.9666 |
| 1.3168        | 1.0321 | 800  | 1.8127          | 48.0557 |
| 1.0608        | 1.2901 | 1000 | 1.6916          | 45.5240 |
| 0.9486        | 1.5481 | 1200 | 1.5227          | 41.0009 |
| 0.8555        | 1.8062 | 1400 | 1.8282          | 48.3905 |
| 0.7964        | 2.0642 | 1600 | 2.1936          | 54.9988 |
| 0.6832        | 2.3222 | 1800 | 1.6408          | 40.3783 |
| 0.5939        | 2.5802 | 2000 | 1.4571          | 39.3327 |
| 0.5738        | 2.8383 | 2200 | 1.3655          | 37.2827 |
| 0.4881        | 3.0963 | 2400 | 1.3322          | 34.9977 |
| 0.4278        | 3.3543 | 2600 | 1.4489          | 36.8832 |
| 0.3979        | 3.6123 | 2800 | 1.4433          | 37.5940 |
| 0.36          | 3.8703 | 3000 | 1.3372          | 36.1490 |
| 0.3348        | 4.1284 | 3200 | 1.3533          | 35.6203 |
| 0.2949        | 4.3864 | 3400 | 1.3401          | 34.7568 |
| 0.2703        | 4.6444 | 3600 | 1.3240          | 34.6746 |
| 0.2519        | 4.9024 | 3800 | 1.2859          | 33.4880 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.3.1.post100
- Datasets 2.19.1
- Tokenizers 0.20.1