File size: 2,907 Bytes
0ae5aaf
 
d479b6a
 
 
 
 
 
 
0ae5aaf
 
d479b6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-E10_speed_pause2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-E10_speed_pause2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2505
- Cer: 29.8296

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 34.0244       | 0.1289 | 200  | 5.3369          | 100.0   |
| 5.0173        | 0.2579 | 400  | 4.7266          | 100.0   |
| 4.8452        | 0.3868 | 600  | 4.6853          | 100.0   |
| 4.7774        | 0.5158 | 800  | 4.5774          | 97.9377 |
| 4.6964        | 0.6447 | 1000 | 4.5999          | 97.9495 |
| 4.6269        | 0.7737 | 1200 | 4.4835          | 96.6569 |
| 4.4084        | 0.9026 | 1400 | 4.5428          | 96.0811 |
| 3.6551        | 1.0316 | 1600 | 3.4889          | 67.0094 |
| 2.8629        | 1.1605 | 1800 | 2.8535          | 54.0541 |
| 2.444         | 1.2895 | 2000 | 2.3817          | 48.1610 |
| 2.1451        | 1.4184 | 2200 | 2.1738          | 44.4418 |
| 1.8677        | 1.5474 | 2400 | 2.0255          | 42.4794 |
| 1.7019        | 1.6763 | 2600 | 1.8023          | 38.5546 |
| 1.5671        | 1.8053 | 2800 | 1.6997          | 36.3749 |
| 1.4107        | 1.9342 | 3000 | 1.6382          | 38.1316 |
| 1.2989        | 2.0632 | 3200 | 1.5183          | 33.8837 |
| 1.1951        | 2.1921 | 3400 | 1.4678          | 33.1610 |
| 1.0867        | 2.3211 | 3600 | 1.4365          | 33.0552 |
| 1.083         | 2.4500 | 3800 | 1.2930          | 30.1234 |
| 1.0106        | 2.5790 | 4000 | 1.2864          | 30.2585 |
| 0.9832        | 2.7079 | 4200 | 1.2784          | 30.0411 |
| 0.9353        | 2.8369 | 4400 | 1.2633          | 29.9471 |
| 0.9108        | 2.9658 | 4600 | 1.2505          | 29.8296 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3