File size: 2,839 Bytes
6b4ea3f
 
e72e756
 
 
 
 
 
 
6b4ea3f
 
e72e756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-E30_freq_pause
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-E30_freq_pause

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0467
- Cer: 28.3130

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 28.57         | 0.1289 | 200  | 4.9399          | 100.0   |
| 4.9152        | 0.2579 | 400  | 4.7298          | 100.0   |
| 4.7776        | 0.3868 | 600  | 4.6311          | 98.1732 |
| 4.7311        | 0.5158 | 800  | 4.5605          | 97.6739 |
| 4.6426        | 0.6447 | 1000 | 4.5556          | 97.7032 |
| 4.5691        | 0.7737 | 1200 | 4.5028          | 97.4330 |
| 4.1847        | 0.9026 | 1400 | 3.9048          | 81.7375 |
| 3.1837        | 1.0316 | 1600 | 2.8792          | 57.0724 |
| 2.6116        | 1.1605 | 1800 | 2.4695          | 49.7827 |
| 2.2803        | 1.2895 | 2000 | 2.2168          | 43.7559 |
| 2.0438        | 1.4184 | 2200 | 1.9216          | 40.6074 |
| 1.8919        | 1.5474 | 2400 | 1.7582          | 39.0273 |
| 1.7295        | 1.6763 | 2600 | 1.6734          | 38.5103 |
| 1.5832        | 1.8053 | 2800 | 1.5192          | 34.3221 |
| 1.4426        | 1.9342 | 3000 | 1.4440          | 33.6642 |
| 1.3355        | 2.0632 | 3200 | 1.3543          | 33.4821 |
| 1.2131        | 2.1921 | 3400 | 1.2427          | 31.7669 |
| 1.1532        | 2.3211 | 3600 | 1.2136          | 31.8785 |
| 1.0948        | 2.4500 | 3800 | 1.1645          | 30.5804 |
| 1.0283        | 2.5790 | 4000 | 1.1471          | 29.8931 |
| 1.0085        | 2.7079 | 4200 | 1.0822          | 28.8181 |
| 0.9753        | 2.8369 | 4400 | 1.0493          | 28.3306 |
| 0.976         | 2.9658 | 4600 | 1.0467          | 28.3130 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1