File size: 2,839 Bytes
6b4ea3f e72e756 6b4ea3f e72e756 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-E30_freq_pause
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-E30_freq_pause
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0467
- Cer: 28.3130
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 28.57 | 0.1289 | 200 | 4.9399 | 100.0 |
| 4.9152 | 0.2579 | 400 | 4.7298 | 100.0 |
| 4.7776 | 0.3868 | 600 | 4.6311 | 98.1732 |
| 4.7311 | 0.5158 | 800 | 4.5605 | 97.6739 |
| 4.6426 | 0.6447 | 1000 | 4.5556 | 97.7032 |
| 4.5691 | 0.7737 | 1200 | 4.5028 | 97.4330 |
| 4.1847 | 0.9026 | 1400 | 3.9048 | 81.7375 |
| 3.1837 | 1.0316 | 1600 | 2.8792 | 57.0724 |
| 2.6116 | 1.1605 | 1800 | 2.4695 | 49.7827 |
| 2.2803 | 1.2895 | 2000 | 2.2168 | 43.7559 |
| 2.0438 | 1.4184 | 2200 | 1.9216 | 40.6074 |
| 1.8919 | 1.5474 | 2400 | 1.7582 | 39.0273 |
| 1.7295 | 1.6763 | 2600 | 1.6734 | 38.5103 |
| 1.5832 | 1.8053 | 2800 | 1.5192 | 34.3221 |
| 1.4426 | 1.9342 | 3000 | 1.4440 | 33.6642 |
| 1.3355 | 2.0632 | 3200 | 1.3543 | 33.4821 |
| 1.2131 | 2.1921 | 3400 | 1.2427 | 31.7669 |
| 1.1532 | 2.3211 | 3600 | 1.2136 | 31.8785 |
| 1.0948 | 2.4500 | 3800 | 1.1645 | 30.5804 |
| 1.0283 | 2.5790 | 4000 | 1.1471 | 29.8931 |
| 1.0085 | 2.7079 | 4200 | 1.0822 | 28.8181 |
| 0.9753 | 2.8369 | 4400 | 1.0493 | 28.3306 |
| 0.976 | 2.9658 | 4600 | 1.0467 | 28.3130 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|