File size: 2,907 Bytes
878958e
 
82287ec
 
 
 
 
 
 
878958e
 
82287ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-E30_speed_pause2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-E30_speed_pause2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8953
- Cer: 19.0834

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 30.708        | 0.1289 | 200  | 4.9281          | 100.0   |
| 4.9317        | 0.2579 | 400  | 4.6751          | 100.0   |
| 4.8066        | 0.3868 | 600  | 4.6333          | 100.0   |
| 4.7261        | 0.5158 | 800  | 4.5954          | 97.9142 |
| 4.6275        | 0.6447 | 1000 | 4.5410          | 97.9730 |
| 3.9356        | 0.7737 | 1200 | 3.3136          | 64.2362 |
| 2.7825        | 0.9026 | 1400 | 2.6449          | 46.5511 |
| 2.3364        | 1.0316 | 1600 | 2.2382          | 39.5770 |
| 2.0272        | 1.1605 | 1800 | 1.8952          | 34.2773 |
| 1.8032        | 1.2895 | 2000 | 1.8786          | 35.2291 |
| 1.6053        | 1.4184 | 2200 | 1.5099          | 27.7145 |
| 1.4602        | 1.5474 | 2400 | 1.4895          | 28.3373 |
| 1.3406        | 1.6763 | 2600 | 1.3510          | 27.1622 |
| 1.2236        | 1.8053 | 2800 | 1.2329          | 25.3819 |
| 1.1237        | 1.9342 | 3000 | 1.1621          | 23.7427 |
| 1.0466        | 2.0632 | 3200 | 1.1441          | 24.2127 |
| 0.9724        | 2.1921 | 3400 | 1.0863          | 22.8731 |
| 0.8808        | 2.3211 | 3600 | 1.0053          | 20.8696 |
| 0.86          | 2.4500 | 3800 | 0.9623          | 20.8343 |
| 0.8126        | 2.5790 | 4000 | 0.9202          | 20.0411 |
| 0.7842        | 2.7079 | 4200 | 0.9126          | 19.5182 |
| 0.7532        | 2.8369 | 4400 | 0.8995          | 19.2244 |
| 0.7269        | 2.9658 | 4600 | 0.8953          | 19.0834 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3