--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: wav2vec2-E30_speed_pause2 results: [] --- # wav2vec2-E30_speed_pause2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8953 - Cer: 19.0834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 30.708 | 0.1289 | 200 | 4.9281 | 100.0 | | 4.9317 | 0.2579 | 400 | 4.6751 | 100.0 | | 4.8066 | 0.3868 | 600 | 4.6333 | 100.0 | | 4.7261 | 0.5158 | 800 | 4.5954 | 97.9142 | | 4.6275 | 0.6447 | 1000 | 4.5410 | 97.9730 | | 3.9356 | 0.7737 | 1200 | 3.3136 | 64.2362 | | 2.7825 | 0.9026 | 1400 | 2.6449 | 46.5511 | | 2.3364 | 1.0316 | 1600 | 2.2382 | 39.5770 | | 2.0272 | 1.1605 | 1800 | 1.8952 | 34.2773 | | 1.8032 | 1.2895 | 2000 | 1.8786 | 35.2291 | | 1.6053 | 1.4184 | 2200 | 1.5099 | 27.7145 | | 1.4602 | 1.5474 | 2400 | 1.4895 | 28.3373 | | 1.3406 | 1.6763 | 2600 | 1.3510 | 27.1622 | | 1.2236 | 1.8053 | 2800 | 1.2329 | 25.3819 | | 1.1237 | 1.9342 | 3000 | 1.1621 | 23.7427 | | 1.0466 | 2.0632 | 3200 | 1.1441 | 24.2127 | | 0.9724 | 2.1921 | 3400 | 1.0863 | 22.8731 | | 0.8808 | 2.3211 | 3600 | 1.0053 | 20.8696 | | 0.86 | 2.4500 | 3800 | 0.9623 | 20.8343 | | 0.8126 | 2.5790 | 4000 | 0.9202 | 20.0411 | | 0.7842 | 2.7079 | 4200 | 0.9126 | 19.5182 | | 0.7532 | 2.8369 | 4400 | 0.8995 | 19.2244 | | 0.7269 | 2.9658 | 4600 | 0.8953 | 19.0834 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3