File size: 2,901 Bytes
acf29f0
 
3a6ef27
 
 
 
 
 
 
acf29f0
 
3a6ef27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-Y_freq_speed2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-Y_freq_speed2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2487
- Cer: 27.1563

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 45.9774       | 0.1289 | 200  | 5.3401          | 100.0   |
| 5.0614        | 0.2579 | 400  | 4.6734          | 100.0   |
| 4.8698        | 0.3868 | 600  | 4.6465          | 100.0   |
| 4.8405        | 0.5158 | 800  | 4.6147          | 100.0   |
| 4.7495        | 0.6447 | 1000 | 4.5812          | 100.0   |
| 4.6725        | 0.7737 | 1200 | 4.4809          | 100.0   |
| 4.4715        | 0.9026 | 1400 | 4.2162          | 98.0964 |
| 3.6966        | 1.0316 | 1600 | 3.0934          | 60.3114 |
| 2.8837        | 1.1605 | 1800 | 2.7554          | 51.6980 |
| 2.3994        | 1.2895 | 2000 | 2.3323          | 44.8766 |
| 2.1484        | 1.4184 | 2200 | 2.0952          | 41.4806 |
| 1.9221        | 1.5474 | 2400 | 1.9481          | 39.1951 |
| 1.8075        | 1.6763 | 2600 | 1.7922          | 35.6345 |
| 1.6334        | 1.8053 | 2800 | 1.7316          | 35.6404 |
| 1.5031        | 1.9342 | 3000 | 1.5918          | 33.4841 |
| 1.3591        | 2.0632 | 3200 | 1.4975          | 30.9401 |
| 1.2379        | 2.1921 | 3400 | 1.4342          | 30.5817 |
| 1.1751        | 2.3211 | 3600 | 1.3655          | 28.4900 |
| 1.1049        | 2.4500 | 3800 | 1.3425          | 28.6780 |
| 1.0825        | 2.5790 | 4000 | 1.2924          | 27.9377 |
| 1.0405        | 2.7079 | 4200 | 1.2683          | 27.2973 |
| 0.9975        | 2.8369 | 4400 | 1.2658          | 27.6204 |
| 0.9624        | 2.9658 | 4600 | 1.2487          | 27.1563 |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3