File size: 2,827 Bytes
7c7e77d
 
40a53ad
 
 
 
 
 
 
7c7e77d
 
40a53ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-Y_speed2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-Y_speed2

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9944
- Cer: 38.7688

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 43.7135       | 0.1289 | 200  | 5.1032          | 100.0   |
| 5.0439        | 0.2579 | 400  | 4.6765          | 100.0   |
| 4.8774        | 0.3868 | 600  | 4.6557          | 100.0   |
| 4.8641        | 0.5158 | 800  | 4.6426          | 100.0   |
| 4.7995        | 0.6447 | 1000 | 4.6472          | 100.0   |
| 4.7762        | 0.7737 | 1200 | 4.6153          | 100.0   |
| 4.7579        | 0.9026 | 1400 | 4.6154          | 100.0   |
| 4.7082        | 1.0316 | 1600 | 4.6180          | 100.0   |
| 4.6786        | 1.1605 | 1800 | 4.5371          | 100.0   |
| 4.6438        | 1.2895 | 2000 | 4.5289          | 100.0   |
| 4.5663        | 1.4184 | 2200 | 4.4416          | 100.0   |
| 4.503         | 1.5474 | 2400 | 4.3983          | 99.3421 |
| 4.2564        | 1.6763 | 2600 | 4.0853          | 82.7714 |
| 3.7092        | 1.8053 | 2800 | 3.2871          | 61.8656 |
| 3.071         | 1.9342 | 3000 | 2.9127          | 53.0663 |
| 2.704         | 2.0632 | 3200 | 2.6764          | 49.4302 |
| 2.4656        | 2.1921 | 3400 | 2.4448          | 45.2420 |
| 2.2855        | 2.3211 | 3600 | 2.2835          | 42.6339 |
| 2.1728        | 2.4500 | 3800 | 2.2042          | 42.0876 |
| 2.0623        | 2.5790 | 4000 | 2.1021          | 39.8144 |
| 1.9909        | 2.7079 | 4200 | 2.0544          | 39.5266 |
| 1.9129        | 2.8369 | 4400 | 2.0083          | 38.7453 |
| 1.9151        | 2.9658 | 4600 | 1.9944          | 38.7688 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1