--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer model-index: - name: wav2vec2-E30_speed3 results: [] --- # wav2vec2-E30_speed3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2614 - Cer: 27.0035 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 44.2054 | 0.1289 | 200 | 5.4975 | 100.0 | | 5.0916 | 0.2579 | 400 | 4.7077 | 100.0 | | 4.8758 | 0.3868 | 600 | 4.6568 | 100.0 | | 4.8539 | 0.5158 | 800 | 4.6120 | 100.0 | | 4.7493 | 0.6447 | 1000 | 4.5950 | 100.0 | | 4.5763 | 0.7737 | 1200 | 4.3522 | 98.5076 | | 3.7522 | 0.9026 | 1400 | 3.0023 | 54.3478 | | 2.71 | 1.0316 | 1600 | 2.6582 | 48.0200 | | 2.3514 | 1.1605 | 1800 | 2.3269 | 42.1034 | | 1.9845 | 1.2895 | 2000 | 1.9847 | 36.9918 | | 1.7755 | 1.4184 | 2200 | 1.8688 | 35.3643 | | 1.6234 | 1.5474 | 2400 | 1.7565 | 33.8837 | | 1.5417 | 1.6763 | 2600 | 1.7060 | 33.1199 | | 1.4338 | 1.8053 | 2800 | 1.6633 | 33.5194 | | 1.3403 | 1.9342 | 3000 | 1.5921 | 32.7791 | | 1.2466 | 2.0632 | 3200 | 1.5050 | 31.0458 | | 1.1278 | 2.1921 | 3400 | 1.4261 | 29.5828 | | 1.0863 | 2.3211 | 3600 | 1.3675 | 28.9189 | | 1.0236 | 2.4500 | 3800 | 1.3119 | 27.9318 | | 0.9973 | 2.5790 | 4000 | 1.2762 | 27.2150 | | 0.9749 | 2.7079 | 4200 | 1.3005 | 27.4677 | | 0.9365 | 2.8369 | 4400 | 1.2889 | 27.6204 | | 0.8997 | 2.9658 | 4600 | 1.2614 | 27.0035 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3