File size: 2,546 Bytes
8122eda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- aihub_adult_baseline
model-index:
- name: whisper-small-Yfreq_speed_pause
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-Yfreq_speed_pause

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub old30 adult freq pause changed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1841
- Cer: 4.9930

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.2772        | 0.1289 | 100  | 0.2544          | 6.4145 |
| 0.166         | 0.2579 | 200  | 0.2291          | 6.5143 |
| 0.1593        | 0.3868 | 300  | 0.2266          | 6.0855 |
| 0.1453        | 0.5158 | 400  | 0.2137          | 6.1090 |
| 0.1141        | 0.6447 | 500  | 0.2080          | 5.7507 |
| 0.1142        | 0.7737 | 600  | 0.1980          | 5.2984 |
| 0.1159        | 0.9026 | 700  | 0.1985          | 5.6391 |
| 0.0568        | 1.0316 | 800  | 0.1871          | 4.8990 |
| 0.0471        | 1.1605 | 900  | 0.1883          | 5.0047 |
| 0.0434        | 1.2895 | 1000 | 0.1893          | 4.9636 |
| 0.0408        | 1.4184 | 1100 | 0.1883          | 5.0164 |
| 0.0383        | 1.5474 | 1200 | 0.1861          | 5.0341 |
| 0.0402        | 1.6763 | 1300 | 0.1865          | 5.0987 |
| 0.0367        | 1.8053 | 1400 | 0.1854          | 4.9636 |
| 0.0386        | 1.9342 | 1500 | 0.1841          | 4.9930 |


### Framework versions

- Transformers 4.46.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1