File size: 2,556 Bytes
96fcc4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
language:
- hi
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- aihub_adult_baseline
model-index:
- name: whisper-small-E50_freq_pause_speed
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-E50_freq_pause_speed

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub old adult freq speed pause changed dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1725
- Cer: 5.0634

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Cer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 0.3013        | 0.1289 | 100  | 0.2517          | 6.4438 |
| 0.1815        | 0.2579 | 200  | 0.2203          | 6.0385 |
| 0.1893        | 0.3868 | 300  | 0.2076          | 5.6450 |
| 0.1646        | 0.5158 | 400  | 0.1988          | 5.5275 |
| 0.1377        | 0.6447 | 500  | 0.1969          | 5.4453 |
| 0.1279        | 0.7737 | 600  | 0.1852          | 5.1809 |
| 0.1254        | 0.9026 | 700  | 0.1795          | 4.9107 |
| 0.0701        | 1.0309 | 800  | 0.1769          | 4.8990 |
| 0.0586        | 1.1599 | 900  | 0.1805          | 4.9518 |
| 0.0588        | 1.2888 | 1000 | 0.1763          | 5.2044 |
| 0.0568        | 1.4178 | 1100 | 0.1782          | 5.2103 |
| 0.0487        | 1.5467 | 1200 | 0.1737          | 4.8285 |
| 0.0526        | 1.6757 | 1300 | 0.1745          | 5.3571 |
| 0.0439        | 1.8046 | 1400 | 0.1730          | 7.2721 |
| 0.0476        | 1.9336 | 1500 | 0.1725          | 5.0634 |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3