--- library_name: transformers language: - hi license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - aihub_adult_baseline model-index: - name: whisper-small-ko-baseline results: [] --- # whisper-small-ko-baseline This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the aihub adult speed changed dataset. It achieves the following results on the evaluation set: - Loss: 0.2914 - Cer: 8.5820 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2433 | 0.1289 | 100 | 0.2943 | 7.8712 | | 0.1379 | 0.2579 | 200 | 0.2758 | 7.4248 | | 0.1105 | 0.3868 | 300 | 0.2831 | 7.6010 | | 0.1231 | 0.5158 | 400 | 0.2671 | 7.2192 | | 0.0984 | 0.6447 | 500 | 0.2721 | 7.2603 | | 0.0938 | 0.7737 | 600 | 0.2742 | 7.1840 | | 0.0954 | 0.9026 | 700 | 0.2718 | 6.9901 | | 0.0385 | 1.0316 | 800 | 0.2649 | 6.9549 | | 0.0302 | 1.1605 | 900 | 0.2645 | 7.5129 | | 0.0388 | 1.2895 | 1000 | 0.2722 | 7.0606 | | 0.0338 | 1.4184 | 1100 | 0.2819 | 7.8889 | | 0.0389 | 1.5474 | 1200 | 0.2725 | 7.7479 | | 0.0335 | 1.6763 | 1300 | 0.2716 | 8.3647 | | 0.0331 | 1.8053 | 1400 | 0.2751 | 7.6774 | | 0.0343 | 1.9342 | 1500 | 0.2825 | 7.8008 | | 0.0134 | 2.0632 | 1600 | 0.2739 | 6.9079 | | 0.0127 | 2.1921 | 1700 | 0.2779 | 8.8287 | | 0.0141 | 2.3211 | 1800 | 0.2822 | 7.1429 | | 0.0113 | 2.4500 | 1900 | 0.2864 | 8.6407 | | 0.0131 | 2.5790 | 2000 | 0.2797 | 10.5909 | | 0.0103 | 2.7079 | 2100 | 0.2835 | 8.4880 | | 0.0117 | 2.8369 | 2200 | 0.2828 | 11.5425 | | 0.0116 | 2.9658 | 2300 | 0.2832 | 9.5747 | | 0.0046 | 3.0948 | 2400 | 0.2862 | 8.8640 | | 0.0045 | 3.2237 | 2500 | 0.2877 | 10.0388 | | 0.0061 | 3.3527 | 2600 | 0.2886 | 8.9991 | | 0.0055 | 3.4816 | 2700 | 0.2894 | 8.4704 | | 0.0052 | 3.6106 | 2800 | 0.2904 | 8.4410 | | 0.0059 | 3.7395 | 2900 | 0.2908 | 10.3266 | | 0.0051 | 3.8685 | 3000 | 0.2913 | 9.3280 | | 0.0047 | 3.9974 | 3100 | 0.2914 | 8.5820 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0