--- license: mit library_name: peft tags: - generated_from_trainer base_model: microsoft/phi-2 model-index: - name: fine-tuning-Phi2-with-webglm-qa-with-lora_3 results: [] --- # fine-tuning-Phi2-with-webglm-qa-with-lora_3 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1155 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 5 - total_train_batch_size: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.243 | 0.2 | 10 | 7.8185 | | 7.4602 | 0.4 | 20 | 6.3280 | | 4.794 | 0.6 | 30 | 3.1068 | | 1.6994 | 0.8 | 40 | 0.6354 | | 0.543 | 1.0 | 50 | 0.5653 | | 0.4542 | 1.2 | 60 | 0.4874 | | 0.4449 | 1.39 | 70 | 0.4225 | | 0.3623 | 1.59 | 80 | 0.3685 | | 0.278 | 1.79 | 90 | 0.3283 | | 0.2385 | 1.99 | 100 | 0.2983 | | 0.2499 | 2.19 | 110 | 0.2748 | | 0.2113 | 2.39 | 120 | 0.2590 | | 0.1966 | 2.59 | 130 | 0.2420 | | 0.217 | 2.79 | 140 | 0.2242 | | 0.1731 | 2.99 | 150 | 0.2121 | | 0.1779 | 3.19 | 160 | 0.2033 | | 0.1687 | 3.39 | 170 | 0.1909 | | 0.156 | 3.59 | 180 | 0.1833 | | 0.1464 | 3.78 | 190 | 0.1763 | | 0.1637 | 3.98 | 200 | 0.1706 | | 0.1455 | 4.18 | 210 | 0.1649 | | 0.128 | 4.38 | 220 | 0.1621 | | 0.1537 | 4.58 | 230 | 0.1562 | | 0.1193 | 4.78 | 240 | 0.1502 | | 0.1323 | 4.98 | 250 | 0.1464 | | 0.1346 | 5.18 | 260 | 0.1440 | | 0.1049 | 5.38 | 270 | 0.1411 | | 0.1265 | 5.58 | 280 | 0.1377 | | 0.13 | 5.78 | 290 | 0.1363 | | 0.1059 | 5.98 | 300 | 0.1335 | | 0.1141 | 6.18 | 310 | 0.1300 | | 0.1097 | 6.37 | 320 | 0.1297 | | 0.1088 | 6.57 | 330 | 0.1287 | | 0.106 | 6.77 | 340 | 0.1261 | | 0.1011 | 6.97 | 350 | 0.1243 | | 0.0999 | 7.17 | 360 | 0.1235 | | 0.1081 | 7.37 | 370 | 0.1223 | | 0.0999 | 7.57 | 380 | 0.1207 | | 0.1057 | 7.77 | 390 | 0.1203 | | 0.0937 | 7.97 | 400 | 0.1192 | | 0.0842 | 8.17 | 410 | 0.1195 | | 0.0907 | 8.37 | 420 | 0.1182 | | 0.1109 | 8.57 | 430 | 0.1176 | | 0.0901 | 8.76 | 440 | 0.1170 | | 0.1005 | 8.96 | 450 | 0.1162 | | 0.0961 | 9.16 | 460 | 0.1159 | | 0.0927 | 9.36 | 470 | 0.1156 | | 0.0916 | 9.56 | 480 | 0.1158 | | 0.0908 | 9.76 | 490 | 0.1156 | | 0.0909 | 9.96 | 500 | 0.1155 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.15.0 - Tokenizers 0.15.0